Criteria of semisimplicity of skew polynomial ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 701-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative ring and $f$ be an injective endomorphism of $R$ such that the Cohn–Jordan extension $A(R,f)$ satisfies the ascending chain condition on left annihilators. In this paper we obtain some semiprimitivity criteria for the skew polynomial ring $R[x,f]$ over the ring $R$. In particular, we prove that the skew polynomial ring is semisimple if and only if its prime radical is zero. Furthermore, it is so if and only if the ring $R$ is semiprime.
@article{FPM_1995_1_3_a8,
     author = {V. A. Mushrub},
     title = {Criteria of semisimplicity of skew polynomial ring},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {701--709},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a8/}
}
TY  - JOUR
AU  - V. A. Mushrub
TI  - Criteria of semisimplicity of skew polynomial ring
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 701
EP  - 709
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a8/
LA  - ru
ID  - FPM_1995_1_3_a8
ER  - 
%0 Journal Article
%A V. A. Mushrub
%T Criteria of semisimplicity of skew polynomial ring
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 701-709
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a8/
%G ru
%F FPM_1995_1_3_a8
V. A. Mushrub. Criteria of semisimplicity of skew polynomial ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 701-709. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a8/

[1] Jordan D. A., “Biective extensions of injective ring endomrphisms”, J. London Math. Soc. Ser. 2, 35:3 (1982), 435–448 | DOI | MR

[2] Wilkinson J. C., “Quotient rings, chain conditions and injective ring endomorphisms”, Glasgow Math. J., 31:2 (1989), 173–181 | DOI | MR | Zbl

[3] Puczylowski E. R., “Behaviour of radical properties of rings under some algebraic constructions”, Radical theory, 38, Coll. Math. Soc. J'anos Bolyai, Hungary, 1982, 449–480 | MR

[4] Ram J., “On the semisimplicity of skew polynomial rings”, Proc. Amer. Math. Soc., 90, no. 3, 1984, 347–351 | MR | Zbl

[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[6] Mushrub V., “Endomorphisms and invariance of radicals of rings”, Proc. of the Int. Conf. on Alg. (Novosibirsk), Contemporary Mathematics, 131, Part II, 1992, 363–380 | MR

[7] Mushrub V. A., “Rasshireniya Kona–Zhordana i koltsa kosykh mnogochlenov” (to appear)

[8] Mushrub V. A., “Invariantnost radikala assotsiativnogo koltsa otnositelno monomorfizmov”, Student i nauchno-tekhnicheskii progress. Matematika, Materialy 26 Vsesoyuznoi nauchnoi studencheskoi konferentsii, Novosibirsk, 1988, 57–61 | MR | Zbl

[9] Bedi S. S., Ram J., “Jacobson radical of skew polynomial rings and skew group rings”, Isr. J. Math., 35:4 (1980), 327–337 | DOI | MR