Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_3_a8, author = {V. A. Mushrub}, title = {Criteria of semisimplicity of skew polynomial ring}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {701--709}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a8/} }
V. A. Mushrub. Criteria of semisimplicity of skew polynomial ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 701-709. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a8/
[1] Jordan D. A., “Biective extensions of injective ring endomrphisms”, J. London Math. Soc. Ser. 2, 35:3 (1982), 435–448 | DOI | MR
[2] Wilkinson J. C., “Quotient rings, chain conditions and injective ring endomorphisms”, Glasgow Math. J., 31:2 (1989), 173–181 | DOI | MR | Zbl
[3] Puczylowski E. R., “Behaviour of radical properties of rings under some algebraic constructions”, Radical theory, 38, Coll. Math. Soc. J'anos Bolyai, Hungary, 1982, 449–480 | MR
[4] Ram J., “On the semisimplicity of skew polynomial rings”, Proc. Amer. Math. Soc., 90, no. 3, 1984, 347–351 | MR | Zbl
[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[6] Mushrub V., “Endomorphisms and invariance of radicals of rings”, Proc. of the Int. Conf. on Alg. (Novosibirsk), Contemporary Mathematics, 131, Part II, 1992, 363–380 | MR
[7] Mushrub V. A., “Rasshireniya Kona–Zhordana i koltsa kosykh mnogochlenov” (to appear)
[8] Mushrub V. A., “Invariantnost radikala assotsiativnogo koltsa otnositelno monomorfizmov”, Student i nauchno-tekhnicheskii progress. Matematika, Materialy 26 Vsesoyuznoi nauchnoi studencheskoi konferentsii, Novosibirsk, 1988, 57–61 | MR | Zbl
[9] Bedi S. S., Ram J., “Jacobson radical of skew polynomial rings and skew group rings”, Isr. J. Math., 35:4 (1980), 327–337 | DOI | MR