The functional law of the iterated logarithm for associated random fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 623-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are a number of interesting models in mathematical statistics, reliability theory and statistical physics described by means of families of associated random variables. In particular, any collection of independent real-valued random variables is automatically associated. The goal of the paper is to provide simply verifiable conditions to guarantee the validity of the functional law of the iterated logarithm for real-valued associated random field $\left\{X_j,\,j\in\mathbb Z^d\right\}$ defined on the lattice $\mathbb Z^d$, $d\geq1$. If this field is wide-sense stationary, the mentioned conditions read: $\sup_{j}E|X_j|^s\infty$ for some $s\in(2,3]$ and the estimate $u(n)=O(n^{-\lambda})$ as $n\to\infty$ for some $\lambda >d/(s-1)$ is admitted by the Cox–Grimmett coefficient $u(n)$ having an elementary expression in terms of the covariance function of the field. Being based on the new maximal inequality established by A. V. Bulinski and M. S. Keane, the proof employs the methods of the known papers by V. Strassen, J. Chover and I. Berkes. An essential role is played also by the estimates of the convergence rates in the central limit theorem for associated random fields obtained in the author's recent publications. The paper is organized as follows: § 1 is the introduction describing the association concept and indicating the investigations in the domain of limit theorems for families of associated variables. Some necessary notations and the formulation of the main result are contained in § 2. The functional law of the iterated logarithm is proved in § 3 with the help of 6 lemmas.
@article{FPM_1995_1_3_a3,
     author = {A. V. Bulinski},
     title = {The functional law of the iterated logarithm for associated random fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {623--639},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a3/}
}
TY  - JOUR
AU  - A. V. Bulinski
TI  - The functional law of the iterated logarithm for associated random fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 623
EP  - 639
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a3/
LA  - ru
ID  - FPM_1995_1_3_a3
ER  - 
%0 Journal Article
%A A. V. Bulinski
%T The functional law of the iterated logarithm for associated random fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 623-639
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a3/
%G ru
%F FPM_1995_1_3_a3
A. V. Bulinski. The functional law of the iterated logarithm for associated random fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 623-639. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a3/

[1] A. V. Bulinskii, Predelnye teoremy v usloviyakh slaboi zavisimosti, izd-vo MGU, M., 1989

[2] A. V. Bulinskii, “Tsentralnaya predelnaya teorema dlya polei drobovogo shuma”, Problemy teorii veroyatnostnykh raspredelenii, XI, Zapiski nauchn. seminarov LOMI, 177, ed. V. N. Sudakova, 1989, 28–36 | MR

[3] A. V. Bulinskii, “Analogi otsenki Berri–Esseena dlya polei s FKG-neravenstvami”, Teoriya veroyatn. i ee primen., 37:4 (1992), 768–769

[4] A. V. Bulinskii, “Skorost skhodimosti v tsentralnoi predelnoi teoreme dlya polei assotsiirovannykh velichin”, Teoriya veroyatn. i ee primen., 40:1 (1995), 165–174 | MR | Zbl

[5] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[6] B. von Bar, “Multi-dimensional integral limit theorem”, Ark. Math., 7 (1967), 71–88 | DOI | MR | Zbl

[7] R. E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models, ed. Holt Rinehart, Winston, 1975 | MR

[8] I. Berkes, “The functional law of the iterated logarithm for dependent random variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 26 (1973), 245–258 | DOI | MR | Zbl

[9] T. Birkel, “A note on the strong law of large numbers for positively dependent random variables”, Statist. Probab. Lett., 7 (1987), 17–20 | DOI | MR

[10] A. V. Bulinski, “On Berry–Esseen estimate analogues for associated random fields”, New Trends in Probab. and Statist., Stability Problems for Stoch. Models, ed. V. M. Zolotarev, TVP, Moscow, 1994, 9–20 | Zbl

[11] A. V. Bulinski, “On the convergence rates in the CLT for positively and negatively dependent random fields”, Proc. Kolmogorov Semester, Int. Euler Math. Inst. (St. Petersburg, March 1993), Gordon and Breach, 1994, 1–12 | MR

[12] A. V. Bulinski, M. S. Keane, Invariance principle for associated random fields, Stability Problems for Stoch. Models, ed. V. M. Zolotarev

[13] J. Chover, “On Strassen version of the loglog law”, Z. Wahrscheinlichkeitstheorie verw. Geb., 8 (1967), 83–90 | DOI | MR | Zbl

[14] J. T. Cox, G. Grimmett, “Central limit theorem for associated random variables and the percolation model”, Ann. Probab., 12 (1984), 514–528 | DOI | MR | Zbl

[15] A. R. Dabrowski, H. Dehling, “A Berry–Esseen theorem and a functional law of the iterated logarithm for weakly associated random vectors”, Stoch. Proc. Appl., 30 (1988), 277–289 | DOI | MR | Zbl

[16] A. R. Dabrowski, A. Jakubovski, “Stable limits for associated random variables”, Ann. Probab., 22 (1994), 514–531 | DOI | MR

[17] P. Doukhan, Mixing: properties and examples, Lecture Notes in Statistics, 85, Springer Verlag, 1995 | MR

[18] J. Esary, F. Proschan, D. Walkup, “Association of random variables with applications”, Ann. Math. Statist., 38 (1967), 1466–1474 | DOI | MR | Zbl

[19] C. Fortuin, P. Kasteleyn, J. Ginibre, “Correlation inequalities on some partially ordered sets”, Commun. Math. Phys., 22 (1971), 89–103 | DOI | MR | Zbl

[20] T. E. Harris, “A lower bound for the critical probability in a certain percolation process”, Proc. Camb. Phil. Soc., 159, 1960, 13–20 | MR

[21] E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37 (1966), 1137–1153 | DOI | MR | Zbl

[22] C. M. Newman, “A general central limit theorem for FKG systems”, Commun. Math. Phys., 91 (1983), 75–80 | DOI | MR | Zbl

[23] C. M. Newman, “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Inequalities in Statist. and Probab., ed. Y. L. Tong, Hayward, 1984, 127–140 | MR

[24] M. Peligrad, Qi-Man Shao, “Self-normalized central limit theorem for sums of weakly dependent random variables”, J. Theor. Probab., 7 (1994), 309–338 | DOI | MR | Zbl

[25] S. T. Rachev, Huang Xin, “Test for association of random variables in the domain of attraction of multivariate law”, Probab. and Math. Statist., 14 (1993), 125–141 | MR | Zbl

[26] V. Strassen, “An invariance principle for the law of the iterated logarithm”, Z. Wahrscheinlichkeitstheorie verw. Geb., 3 (1964), 211–228 | DOI | MR

[27] Ch. Suquet, “Introduction a association”, Pub. IRMA. Lille, 34:XIII (1994), 1–20

[28] M. J. Wichura, “Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments”, Ann. Probab., 1 (1973), 273–296 | MR