On Jackson inequality in $L_p(\mathbb T^d)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 753-766

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proved some necessary and sufficient conditions on a finite set of $d$–dimensional vectors $\{\alpha_l\}$, when Jackson–Youdin inequality for the approximation of periodic function $f$ by trigonometric polynomials: $$ E_{n-1}(f)_q\le A\cdot n^{-r +(d/p-d/q)_+}\cdot \max\limits_{l}\|\Delta_{2\pi\alpha_l/n}^m f^{(r)}\|_p, $$ where $A>0$ is independent of $f$ and $n$, holds. A criterion of solvability of the homological equation $$ f(x)-\frac{1}{(2\pi)^d}\int f(t)dt=\varphi(x+2\pi\alpha)-\varphi(x)\qquada.e.\ x $$ on the sets of functions $\{f\colon\ f^{(r)}\in L_p(\mathbb T^d)\}$ is obtained.
@article{FPM_1995_1_3_a11,
     author = {A. V. Rozhdestvenskii},
     title = {On {Jackson} inequality in $L_p(\mathbb T^d)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {753--766},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On Jackson inequality in $L_p(\mathbb T^d)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 753
EP  - 766
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/
LA  - ru
ID  - FPM_1995_1_3_a11
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On Jackson inequality in $L_p(\mathbb T^d)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 753-766
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/
%G ru
%F FPM_1995_1_3_a11
A. V. Rozhdestvenskii. On Jackson inequality in $L_p(\mathbb T^d)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 753-766. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/