On Jackson inequality in $L_p(\mathbb T^d)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 753-766
Voir la notice de l'article provenant de la source Math-Net.Ru
The author proved some necessary and sufficient conditions on a finite set of $d$–dimensional vectors $\{\alpha_l\}$, when Jackson–Youdin inequality for the approximation of periodic function $f$ by trigonometric polynomials:
$$
E_{n-1}(f)_q\le A\cdot n^{-r +(d/p-d/q)_+}\cdot
\max\limits_{l}\|\Delta_{2\pi\alpha_l/n}^m f^{(r)}\|_p,
$$
where $A>0$ is independent of $f$ and $n$, holds. A criterion of solvability of the homological equation
$$
f(x)-\frac{1}{(2\pi)^d}\int f(t)dt=\varphi(x+2\pi\alpha)-\varphi(x)\qquada.e.\ x
$$
on the sets of functions $\{f\colon\ f^{(r)}\in L_p(\mathbb T^d)\}$ is obtained.
@article{FPM_1995_1_3_a11,
author = {A. V. Rozhdestvenskii},
title = {On {Jackson} inequality in $L_p(\mathbb T^d)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {753--766},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/}
}
A. V. Rozhdestvenskii. On Jackson inequality in $L_p(\mathbb T^d)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 753-766. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/