On Jackson inequality in $L_p(\mathbb T^d)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 753-766.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proved some necessary and sufficient conditions on a finite set of $d$–dimensional vectors $\{\alpha_l\}$, when Jackson–Youdin inequality for the approximation of periodic function $f$ by trigonometric polynomials: $$ E_{n-1}(f)_q\le A\cdot n^{-r +(d/p-d/q)_+}\cdot \max\limits_{l}\|\Delta_{2\pi\alpha_l/n}^m f^{(r)}\|_p, $$ where $A>0$ is independent of $f$ and $n$, holds. A criterion of solvability of the homological equation $$ f(x)-\frac{1}{(2\pi)^d}\int f(t)dt=\varphi(x+2\pi\alpha)-\varphi(x)\qquada.e.\ x $$ on the sets of functions $\{f\colon\ f^{(r)}\in L_p(\mathbb T^d)\}$ is obtained.
@article{FPM_1995_1_3_a11,
     author = {A. V. Rozhdestvenskii},
     title = {On {Jackson} inequality in $L_p(\mathbb T^d)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {753--766},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On Jackson inequality in $L_p(\mathbb T^d)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 753
EP  - 766
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/
LA  - ru
ID  - FPM_1995_1_3_a11
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On Jackson inequality in $L_p(\mathbb T^d)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 753-766
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/
%G ru
%F FPM_1995_1_3_a11
A. V. Rozhdestvenskii. On Jackson inequality in $L_p(\mathbb T^d)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 753-766. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a11/

[1] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | Zbl

[2] Yudin V. A., Yudin A. A., “O teoremakh Dzheksona v $L_2$”, Matem. zametki, 48:4 (1990), 152–157 | MR | Zbl

[3] Anosov D. V., “Ob additivnom funktsionalnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1259–1274 | MR | Zbl

[4] Helson H., Analiticity on compact abelian groups, Algebras in Analysis, Acad. Press, New York, 1975 | MR

[5] Shmidt V. M., Diofantovy priblizheniya, Mir, M., 1983 | MR

[6] Edvards R., Ryady Fure v sovremennom izlozhenii, V. II, Mir, M., 1985

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[8] Rozhdestvenskii A. V., “O neravenstvakh Dzheksona i multiplikatorakh v $L_p$”, Matem. zametki, 57:4 (1995), 551–579 | MR | Zbl

[9] Rozhdestvenskii A. V., “O koogranichennosti funktsii na tore”, Matem. zametki, 55:6 (1994), 103–110 | MR | Zbl

[10] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR

[11] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[12] Stein E. M., “On limits of sequences of operators”, Ann. of Math., 74 (1961), 140–170 | DOI | MR | Zbl