Compulsory configurations of points in the plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 491-516

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a set of $N$ points in a general position (no three points are collinear) on the plane. A subset of $P$ may form a specific configuration, say obtuse triangle or convex pentagon. There exist configurations of points, that compulsory emerge in every point set of great enough cardinality. In this paper, such compulsory configurations of points on the plane are considered.
@article{FPM_1995_1_2_a9,
     author = {B. Kh. Sendov},
     title = {Compulsory configurations of points in the plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {491--516},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/}
}
TY  - JOUR
AU  - B. Kh. Sendov
TI  - Compulsory configurations of points in the plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 491
EP  - 516
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/
LA  - ru
ID  - FPM_1995_1_2_a9
ER  - 
%0 Journal Article
%A B. Kh. Sendov
%T Compulsory configurations of points in the plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 491-516
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/
%G ru
%F FPM_1995_1_2_a9
B. Kh. Sendov. Compulsory configurations of points in the plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 491-516. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/