Compulsory configurations of points in the plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 491-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a set of $N$ points in a general position (no three points are collinear) on the plane. A subset of $P$ may form a specific configuration, say obtuse triangle or convex pentagon. There exist configurations of points, that compulsory emerge in every point set of great enough cardinality. In this paper, such compulsory configurations of points on the plane are considered.
@article{FPM_1995_1_2_a9,
     author = {B. Kh. Sendov},
     title = {Compulsory configurations of points in the plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {491--516},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/}
}
TY  - JOUR
AU  - B. Kh. Sendov
TI  - Compulsory configurations of points in the plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 491
EP  - 516
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/
LA  - ru
ID  - FPM_1995_1_2_a9
ER  - 
%0 Journal Article
%A B. Kh. Sendov
%T Compulsory configurations of points in the plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 491-516
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/
%G ru
%F FPM_1995_1_2_a9
B. Kh. Sendov. Compulsory configurations of points in the plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 491-516. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a9/

[1] A. Bialostocki, P. Dierker and B. Voxman, “Some notes on the Erdös–Szekeres theorem”, Discrete Mathematics, 91 (1991), 231–238 | DOI | MR | Zbl

[2] Blumenthal L. M., “Metric methods in determinant theory”, Amer. Journal of Math., 61 (1939), 912–922 | DOI | MR | Zbl

[3] Danzer L., B. Grünbaum, “Über zwei Probleme bezüglich konvexer Körper von P. Erdös and V. L. Klee”, Math. Zeitschr, 79 (1962), 95–99 | DOI | MR | Zbl

[4] Erdös P., G. Szekeres, “A Combinatorial Problem in Geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[5] Erdös P., G. Szekeres, “On Some Extremum Problems in Elementary Geometry”, Ann. Univ. Sci. Budapest, 3–4 (1960), 53–62 | MR

[6] Harborth H., “Konvex Funfecke in ebenen Punctmengen”, Elem. Math., 33 (1978), 116–118 | MR | Zbl

[7] Horton J. D., “Sets with no Empty 7-gons”, C. Math. Bull., 26 (1983), 482–484 | DOI | MR | Zbl

[8] Rappaport D., Computing the Largest Empty Convex Subset of a Set of Points, ACM 0-89791-163-6/85/006/0161, 1985

[9] Sendov Bl., “On a Conjecture of P. Erdös and D. Szekeres”, Comptes Randus de l'Acad. Bulgare de Sci., 45:12 (1992), 17–20 | MR | Zbl

[10] Sendov Bl., “Optimal disposition of points in the plane with respect to the angles, determined by them”, Discret Mathematics and Applications, 1993, 10–24, Blagoevgrad | Zbl

[11] Sendov Bl., “Compulsory Configurations of Points in Euclidean Plane”, Advances in Parallel Algorithms, eds. I. Dimov, O. Tonev, IOS Press, Amsterdam, 1994, 194–201 | MR

[12] Sendov Bl., “Angles in a Plane Configuration of Points”, Comptes Randus de l'Acad. Bulgare de Sci. (to appear)

[13] Sendov Bl., “Minimax of the Angles in a plane configuration of points” (to appear)

[14] Szekeres G., “On an extremum problem in the plane”, Amer. Journal of Math., 63 (1941), 208–210 | DOI | MR | Zbl