@article{FPM_1995_1_2_a8,
author = {G. E. Puninskii},
title = {Serial {Krull{\textendash}Schmidt} rings and pure-injective modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {471--489},
year = {1995},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a8/}
}
G. E. Puninskii. Serial Krull–Schmidt rings and pure-injective modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 471-489. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a8/
[1] Drozd Yu. A., “Ob obobschenno odnoryadnykh koltsakh”, Matem. zametki, 18:5 (1975), 705–710 | MR | Zbl
[2] Puninskii G. E., “Superrazlozhimye chisto-in'ektivnye moduli nad kommutativnymi koltsami normirovaniya”, Sib. matem. zh., 31:6 (1990), 655–671 | MR
[3] Puninskii G. E., “Nerazlozhimye chisto-in'ektivnye moduli nad tsepnymi koltsami”, Trudy Mosk. matem. obschestva, 56, 1994, 1–13
[4] Puninskii G. E., “Odno zamechanie o chisto-in'ektivnykh modulyakh nad polutsepnym koltsom”, Uspekhi matem. nauk, 49:5 (1994), 171–172 | MR | Zbl
[5] Bessenrodt K., Brungs H. H., Törner G., Right serial rings. Part 1, Preprint, 1990
[6] Camps R., Dicks W. On semilocal rings, Israel J. Math., 81 (1993), 203–211 | DOI | MR | Zbl
[7] Eklof P., Herzog I, A Some model theory over a serial ring, Preprint, 1993
[8] Eklof P., Sabbagh G. “Model completions and modules”, Ann. Math. Logic, 2:3 (1971), 251–295 | DOI | MR | Zbl
[9] Herzog I., A test for finite representation type, Preprint, 1993 | MR
[10] McConnell J. C., Robson J. C., Noncommutative noetherian rings, New York, 1988
[11] Mohamed S. H., Müller B. J., Continuous and discrete modules, Cambridge, 1990 | MR
[12] Müller B. J., Singh S., “Uniform modules over serial rings”, J. Algebra, 144 (1991), 94–109 | DOI | MR | Zbl
[13] Prest M., Model theory and modules, Cambridge, 1988 | MR
[14] Puninski G. E., “Pure-injective modules over right Noetherian serial rings”, Comm. Algebra, 23:4 (1995), 1579–1591 | DOI | MR | Zbl
[15] Rothmaler Ph., “A trivial remark on purity”, Seminarber. Fachber, 112, Humbold Univ., Berlin, 1991, 112–127
[16] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. Lond. Math. Soc., Ser. 3, 28:2 (1974), 291–310 | DOI | MR | Zbl
[17] Warfield R. B., “Serial rings and finitely presented modules”, J. Algebra, 37:3 (1975), 187–222 | DOI | MR | Zbl