Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_2_a4, author = {M. I. Zelikin}, title = {Irregularity of optimal control in regular extremal problems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {399--408}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a4/} }
M. I. Zelikin. Irregularity of optimal control in regular extremal problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 399-408. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a4/
[1] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. mat., 1959, no. 2, 25–32 | Zbl
[2] Roxin E., “The existence of optimal controls”, Michigan Math. J., 9:2 (1962), 109–119 | DOI | MR | Zbl
[3] Silin D. B., “Lineinye zadachi optimalnogo bystrodeistviya s razryvnymi na mnozhestve polozhitelnoi mery upravleniyami”, Izv. AN SSSR. Ser. mat., 48:4 (1984), 754–864 | MR
[4] Fuller A. T., “Relay Control Systems Optimized for Various Performance Criteria”, Automatic and Remote Control, Proc. First World Congress IFAC, vol. 1 (Moscow, 1960), Butterworths, London, 510–519
[5] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR
[6] Brunovsky P., “Every normal linear system has a regular time-optimal synthesis”, Math. Slovaca, 28:1 (1978), 81–100 | MR | Zbl
[7] Brunovsky P., “Existence of regular synthesis for general control probleme”, J. Diff. Eq., 38 (1980), 317–344 | DOI | MR
[8] Zelikina L. F., “K voprosu o regulyarnom sinteze”, DAN SSSR, 267:3 (1982), 532–535 | MR | Zbl
[9] Sussman H., “Synthesis, Presynthesis, Sufficient conditions for optimality abs. subanalytic sets”, Non-linear Controllability and Optimal Control, Monograph Textbook Pure Appl. Math., 133, ed. H. Sussman, Dekker, P. Y., 1990, 1–19 | MR | Zbl
[10] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Trudy MIAN im. V. A. Steklova, 197, 1991, 85–166 | MR | Zbl
[11] Kupka I., “The ubiquity of Fuller's phenomenon”, Non-linear Controllability and Optimal Control, Monograph Textbook Pure Appl. Math., 133ed. . H. Sussman, Dekker, N. Y., 1990, 313–350 | MR | Zbl
[12] Zelikin M. I., Borisov V. F., Theory of Chattering Control with applications to Astronautics, Robotics, Economics and Engineering, Birkhauser, Boston, 1994 | MR | Zbl
[13] Kelley H. J., Kopp R. E., Moyer H. G., “Singular Extremals”, Topics in Optimization, ed. G. Leitmann, Acad. Press, N. Y., 1967, 63–103 | MR
[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl
[15] Dubovitskii A. Ya., Milyutin A. A., “Neobkhodimye usloviya slabogo ekstremuma v zadachakh optimalnogo upravleniya so smeshannymi ogranicheniyami tipa neravenstv”, ZhVM i MF, 8:4 (1968), 725–779 | Zbl
[16] Dikussar V. V., Milyutin A. A., Kachestvennye i chislennye metody v printsipe maksimuma, Nauka, M., 1989 | MR
[17] Milyutin A. A., Osmolovskii N. P., Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993 | MR | Zbl