The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle~$\pi/6$ in case of Dirichlet problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 569-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the Hilbert space $H=L^2(D)$, where $D=\{(x,y)\mid 0\leq y\sqrt{3}\leq x\leq(2\pi-y\sqrt{3})/3\}$. Let $T$ be the self-adjoint non-negative operator from $H$ to $H$ which is generated by the spectral Dirichlet problem $\Delta u+\lambda u=0$ on $D$, $u=0$ on $\partial D$. For $p\in L^\infty(D)$ let the operator $P\colon H\to H$ take each $f\in H$ to the product $p\cdot f$. In this paper concrete formulas for the first regularized trace of the operator $T^\alpha+P$, $\alpha>3/2$, are given for different classes of essentially bounded functions $p$.
@article{FPM_1995_1_2_a22,
     author = {I. V. Tomina},
     title = {The first regularized trace for a power of the {Laplace} operator on the rectangular triangle with the angle~$\pi/6$ in case of {Dirichlet} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {569--572},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a22/}
}
TY  - JOUR
AU  - I. V. Tomina
TI  - The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle~$\pi/6$ in case of Dirichlet problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 569
EP  - 572
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a22/
LA  - ru
ID  - FPM_1995_1_2_a22
ER  - 
%0 Journal Article
%A I. V. Tomina
%T The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle~$\pi/6$ in case of Dirichlet problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 569-572
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a22/
%G ru
%F FPM_1995_1_2_a22
I. V. Tomina. The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle~$\pi/6$ in case of Dirichlet problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 569-572. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a22/

[1] Shestopal A. F., Geometriya operatora Laplasa, Vyscha shkola, K., 1991 | Zbl

[2] Makai E., “Complete orthogonal systems of eigenfunctions of three triangular membranes”, Studia Scientiarum Mathematicarum Hungarica, 1970, no. 5, 51–62 | MR | Zbl

[3] Dubrovskii V. V., UMN, 46:3 (1991), 187–188 | MR | Zbl

[4] Ilin V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Ch. 2, Nauka, M., 1973