On the bandwidth dimension of finite-dimensional associative algebras over a field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 385-391
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the bandwidth dimension function on countable-dimensional algebras over a field is considered. Appropriate infinite matrix representations of some rings which are algebras (including skew polynomial extensions of rings) are constructed. Therefore these rings have got zero bandwidth dimension.
@article{FPM_1995_1_2_a2,
author = {T. V. Golovacheva},
title = {On the bandwidth dimension of finite-dimensional associative algebras over a field},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {385--391},
year = {1995},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/}
}
T. V. Golovacheva. On the bandwidth dimension of finite-dimensional associative algebras over a field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 385-391. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/
[1] K. R. Goodearl, P. Menal, J. Moncasi, “Free and residually artinian regular rings”, J. Algebra (to appear) | MR
[2] N. Dzhekobson, Stroenie kolets, Izd-vo inostrannoi literatury, M., 1961 | MR
[3] D. V. Tjukavkin, “Rings all of whose one-sided ideals are generated by idempotents”, Communications in Algebra, 17:5 (1989), 1193–1198 | DOI | MR | Zbl
[4] J. Hannah, K. C. O'Meara, “A new measure of growth for countable-dimension algebra I” (to appear)