Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_2_a2, author = {T. V. Golovacheva}, title = {On the bandwidth dimension of finite-dimensional associative algebras over a field}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {385--391}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/} }
TY - JOUR AU - T. V. Golovacheva TI - On the bandwidth dimension of finite-dimensional associative algebras over a field JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 385 EP - 391 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/ LA - ru ID - FPM_1995_1_2_a2 ER -
T. V. Golovacheva. On the bandwidth dimension of finite-dimensional associative algebras over a field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 385-391. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/
[1] K. R. Goodearl, P. Menal, J. Moncasi, “Free and residually artinian regular rings”, J. Algebra (to appear) | MR
[2] N. Dzhekobson, Stroenie kolets, Izd-vo inostrannoi literatury, M., 1961 | MR
[3] D. V. Tjukavkin, “Rings all of whose one-sided ideals are generated by idempotents”, Communications in Algebra, 17:5 (1989), 1193–1198 | DOI | MR | Zbl
[4] J. Hannah, K. C. O'Meara, “A new measure of growth for countable-dimension algebra I” (to appear)