On the bandwidth dimension of finite-dimensional associative algebras over a field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 385-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the bandwidth dimension function on countable-dimensional algebras over a field is considered. Appropriate infinite matrix representations of some rings which are algebras (including skew polynomial extensions of rings) are constructed. Therefore these rings have got zero bandwidth dimension.
@article{FPM_1995_1_2_a2,
     author = {T. V. Golovacheva},
     title = {On the bandwidth dimension of finite-dimensional associative algebras over a field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {385--391},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/}
}
TY  - JOUR
AU  - T. V. Golovacheva
TI  - On the bandwidth dimension of finite-dimensional associative algebras over a field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 385
EP  - 391
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/
LA  - ru
ID  - FPM_1995_1_2_a2
ER  - 
%0 Journal Article
%A T. V. Golovacheva
%T On the bandwidth dimension of finite-dimensional associative algebras over a field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 385-391
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/
%G ru
%F FPM_1995_1_2_a2
T. V. Golovacheva. On the bandwidth dimension of finite-dimensional associative algebras over a field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 385-391. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a2/

[1] K. R. Goodearl, P. Menal, J. Moncasi, “Free and residually artinian regular rings”, J. Algebra (to appear) | MR

[2] N. Dzhekobson, Stroenie kolets, Izd-vo inostrannoi literatury, M., 1961 | MR

[3] D. V. Tjukavkin, “Rings all of whose one-sided ideals are generated by idempotents”, Communications in Algebra, 17:5 (1989), 1193–1198 | DOI | MR | Zbl

[4] J. Hannah, K. C. O'Meara, “A new measure of growth for countable-dimension algebra I” (to appear)