Binomial presentation of linear recurring sequences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 553-556
It is proved that any linear recurring sequence over commutative local Artinian ring $R$ can be presented as a linear combination of binomial sequences over some Galois extension $S$ of $R$. If the roots of the binomial sequences belong to the fixed coordinate set of $S$, then this presentation is unique.
@article{FPM_1995_1_2_a18,
author = {V. L. Kurakin},
title = {Binomial presentation of linear recurring sequences},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {553--556},
year = {1995},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a18/}
}
V. L. Kurakin. Binomial presentation of linear recurring sequences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 553-556. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a18/
[1] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskr. matem., 3:4 (1991), 105–127 | MR | Zbl
[2] Ganske G., McDonald B. R., “Finite local rings”, Rocky Mountain J. of Math., 3:4 (1973), 521–540 | DOI | MR | Zbl
[3] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kvazifrobeniusovymi modulyami”, Uspekhi matem. nauk, 48:3 (1993), 197–198 | MR | Zbl