Binomial presentation of linear recurring sequences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 553-556.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any linear recurring sequence over commutative local Artinian ring $R$ can be presented as a linear combination of binomial sequences over some Galois extension $S$ of $R$. If the roots of the binomial sequences belong to the fixed coordinate set of $S$, then this presentation is unique.
@article{FPM_1995_1_2_a18,
     author = {V. L. Kurakin},
     title = {Binomial presentation of linear recurring sequences},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {553--556},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a18/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Binomial presentation of linear recurring sequences
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 553
EP  - 556
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a18/
LA  - ru
ID  - FPM_1995_1_2_a18
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Binomial presentation of linear recurring sequences
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 553-556
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a18/
%G ru
%F FPM_1995_1_2_a18
V. L. Kurakin. Binomial presentation of linear recurring sequences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 553-556. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a18/

[1] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskr. matem., 3:4 (1991), 105–127 | MR | Zbl

[2] Ganske G., McDonald B. R., “Finite local rings”, Rocky Mountain J. of Math., 3:4 (1973), 521–540 | DOI | MR | Zbl

[3] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kvazifrobeniusovymi modulyami”, Uspekhi matem. nauk, 48:3 (1993), 197–198 | MR | Zbl