Non-classical applications of Laplace operator
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 533-534.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differentiable function is expanded on overflowing system in such a way that the expansion may be differentiated termwise infinitely.
@article{FPM_1995_1_2_a13,
     author = {V. V. Dubrovskii},
     title = {Non-classical applications of {Laplace} operator},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {533--534},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a13/}
}
TY  - JOUR
AU  - V. V. Dubrovskii
TI  - Non-classical applications of Laplace operator
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 533
EP  - 534
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a13/
LA  - ru
ID  - FPM_1995_1_2_a13
ER  - 
%0 Journal Article
%A V. V. Dubrovskii
%T Non-classical applications of Laplace operator
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 533-534
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a13/
%G ru
%F FPM_1995_1_2_a13
V. V. Dubrovskii. Non-classical applications of Laplace operator. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 533-534. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a13/

[1] Smelov V. V., Operatory Shturma–Liuvillya i ikh neklassicheskie prilozheniya, Nauka, Novosibirsk, 1992 | MR | Zbl