Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 161-176

Voir la notice de l'article provenant de la source Math-Net.Ru

The small Fine–Gillman–Lambek extension generated by the classical ring of quotients, and the Riemann extension generated by Riemann $\mu$-integrable functions are both characterized as divisible envelopes of the same type of the ring of all bounded continuous functions on the Aleksandrov space. This shows the similarity of these extensions that are rather different by their origin.
@article{FPM_1995_1_1_a7,
     author = {V. K. Zakharov},
     title = {Connection between the classical ring of quotients of the ring of continuous functions and {Riemann} integrable functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--176},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a7/}
}
TY  - JOUR
AU  - V. K. Zakharov
TI  - Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 161
EP  - 176
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a7/
LA  - ru
ID  - FPM_1995_1_1_a7
ER  - 
%0 Journal Article
%A V. K. Zakharov
%T Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 161-176
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a7/
%G ru
%F FPM_1995_1_1_a7
V. K. Zakharov. Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 161-176. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a7/