On high-level crossing for a class of discrete-time stochastic processes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 81-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study the asymptotic behaviour of the first passage time for some discrete-time stochastic processes arising in applied probability. The paper is organized as follows. The systems' description is given in § 1 along with the main results. The integer-valued random walks with impenetrable (as well as reflecting) barrier at origin $$ W_{k}=\max(0,W_{k-1}+X_{k}),\ k \geq 1,\ W_{0}=x $$ are treated in § 2. The main object of investigation is $N_{x,n}=\inf\{k\colon W_{k}=n\}$, the first overflow time in terms of inventory theory. The limit distribution of normalized random variable $\tau_{x,n}=N_{x,n}(\mathrm{E}N_{x,n})^{-1}$ is obtained for all the initial states $x$ and possible values of $\mathrm{E}X_{k}$ for the case of the three-valued i. i. d. random variables $X_{k}$ (demand and supply in batches of fixed volume). The domain of model's stability with respect to initial state and system's parameters is established as well. The influence of two-level control policy on system's behaviour is dealt with in § 3. It is proved, in particular, that $\tau_{x,n}$ is asymptotically exponential if $\mathrm{E}X_{k}0$ in a sufficiently wide band in the neighbourhood of the absorbing boundary $n$. The directions of further investigations and various possibilities of application are given in § 4.
@article{FPM_1995_1_1_a3,
     author = {E. V. Bulinskaya},
     title = {On high-level crossing for a class of discrete-time stochastic processes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--107},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a3/}
}
TY  - JOUR
AU  - E. V. Bulinskaya
TI  - On high-level crossing for a class of discrete-time stochastic processes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 81
EP  - 107
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a3/
LA  - ru
ID  - FPM_1995_1_1_a3
ER  - 
%0 Journal Article
%A E. V. Bulinskaya
%T On high-level crossing for a class of discrete-time stochastic processes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 81-107
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a3/
%G ru
%F FPM_1995_1_1_a3
E. V. Bulinskaya. On high-level crossing for a class of discrete-time stochastic processes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 81-107. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a3/

[1] L. G. Afanaseva, E. V. Bulinskaya, Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo MGU, M., 1980

[2] L. G. Afanaseva, E. V. Bulinskaya, “Sluchainye bluzhdaniya s usloviyami na granitse i ikh primeneniya”, Dopolnenie k knige: N. Prabkhu, Stokhasticheskie protsessy teorii zapasov, Mir, M., 1984 | MR | Zbl

[3] L. G. Afanaseva, E. V. Bulinskaya, “Nekotorye asimptoticheskie rezultaty dlya sluchainykh bluzhdanii v polose”, Teoriya veroyatn. i ee primen., XXIX:4, 654–668 | MR | Zbl

[4] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, 1, Nauka, M., 1969

[5] B. V. Gnedenko, Kurs teorii veroyatnostei, 6 izd., Nauka, M., 1988 | MR

[6] G. Kramer, Matematicheskie metody statistiki, Mir, M., 1975 | MR

[7] A. D. Solovev, Analiticheskie metody rascheta i otsenki nadezhnosti, Voprosy matematicheskoi teorii nadezhnosti, ed. B. V. Gnedenko, Radio i svyaz, M., 1983 | MR

[8] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, I, Mir, M., 1964 | Zbl

[9] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, II, Mir, M., 1967

[10] M. Khadzhar, “Asimptotika vremeni pervogo opustosheniya khranilischa”, Vestnik MGU, ser. 1, matem. i mekh., 1993, no. 1, 97–101 | MR

[11] E. V. Bulinskaya, “Boundary crossing problems for some applied probability models”, Dwudziesta trzecia ogólnopolska konferencja zastosowań matematyki, Zakopane–Kościelisko (20–27. IX. 1994), 19

[12] E. V. Bulinskaya, “On optimal capacities of some inventory systems”, Proc. Second Int. Symp. on Inventories, Budapest, 1982, 639–648

[13] E. V. Bulinskaya, “The asymptotic behaviour of some inventory systems”, Proc. Third Int. Symp. on Inventories, Budapest, 1984, 459–472 | MR

[14] V. Kalashnikov, Topics on regenerative processes, CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1994 | MR | Zbl

[15] R. A. Khan, “On cumulative sum procedures and the SPRT with applications”, J. R. Statist. Soc., 46:1 (1984), 79–85 | MR | Zbl

[16] W. Stadje, “Asymptotic behaviour of a stopping-time related to cumulative sum procedures and single-server queues”, J. Appl. Probab., 24 (1987), 200–214 | DOI | MR | Zbl