Inverse problems of symbolic dimamics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 71-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(n)$ be a polynomial with irrational greatest coefficient. Let also a superword $W$ $(W=(w_n),n\in\mathbb N)$ be the sequence of first binary digits of $\{P(n)\}$, i.e. $w_n=[2\{P(n)\}]$, and $T(k)$ be the number of different subwords of $W$ whose length is equal to $k$. The main result of the paper is the following: Theorem 1.1. For any $n$ there exists a polynomial $Q(k)$ such that if $deg(P)=n$, then $T(k)=Q(k)$ for all sufficiently large $k$.
@article{FPM_1995_1_1_a2,
     author = {A. Ya. Belov and G. V. Kondakov},
     title = {Inverse problems of symbolic dimamics},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {71--79},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a2/}
}
TY  - JOUR
AU  - A. Ya. Belov
AU  - G. V. Kondakov
TI  - Inverse problems of symbolic dimamics
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 71
EP  - 79
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a2/
LA  - ru
ID  - FPM_1995_1_1_a2
ER  - 
%0 Journal Article
%A A. Ya. Belov
%A G. V. Kondakov
%T Inverse problems of symbolic dimamics
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 71-79
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a2/
%G ru
%F FPM_1995_1_1_a2
A. Ya. Belov; G. V. Kondakov. Inverse problems of symbolic dimamics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 71-79. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a2/

[1] I. M. Vinogradov, “K voprosu o raspredelenii drobnykh chastei mnogochlena”, Izv. AN SSSR. Ser. matem., 25 (1961), 749–754 | MR | Zbl

[2] L. Keipers, G. Nidderreiter, Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR

[3] L. D. Pustylnikov, “Raspredelenie drobnykh chastei znachenii mnogochlena”, Uspekhi matem. nauk, 48:4 (1993), 131–166 | MR

[4] R. N. Izmailov, A. A. Vladimirov, “Dimension of aliasing structures”, Int. J. of Systems. Appl. in Comp. Graphics, 17:5 (1993)

[5] M. Morse, G. A. Hedlund, “Symbolic dynamics II: Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR | Zbl

[6] H. Weyl, “Über der gleichverteilung von zahlen mod. 1”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl