Inverse problems of symbolic dimamics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 71-79
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P(n)$ be a polynomial with irrational greatest coefficient. Let also a superword $W$ $(W=(w_n),n\in\mathbb N)$ be the sequence of first binary digits of $\{P(n)\}$, i.e. $w_n=[2\{P(n)\}]$, and $T(k)$ be the number of different subwords of $W$ whose length is equal to $k$. The main result of the paper is the following:
Theorem 1.1.
For any $n$ there exists a polynomial $Q(k)$ such that if $deg(P)=n$, then $T(k)=Q(k)$ for all sufficiently large $k$.
@article{FPM_1995_1_1_a2,
author = {A. Ya. Belov and G. V. Kondakov},
title = {Inverse problems of symbolic dimamics},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {71--79},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a2/}
}
A. Ya. Belov; G. V. Kondakov. Inverse problems of symbolic dimamics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 71-79. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a2/