On left distributivity of some right distributive rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 289-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a right distributive right nonsingular ring. Assume that for every element $a\in A$ there exists a natural number $n$ such that $a^nA\subseteq Aa$. Then $A$ is a left distributive ring.
@article{FPM_1995_1_1_a16,
     author = {A. A. Tuganbaev},
     title = {On left distributivity of some right distributive rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {289--300},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a16/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - On left distributivity of some right distributive rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 289
EP  - 300
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a16/
LA  - ru
ID  - FPM_1995_1_1_a16
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T On left distributivity of some right distributive rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 289-300
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a16/
%G ru
%F FPM_1995_1_1_a16
A. A. Tuganbaev. On left distributivity of some right distributive rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 289-300. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a16/

[1] Gräter J., “Strong right $D$-domains”, Monatsh. Math., 107 \mbox (1989), 189–205 | DOI | MR | Zbl

[2] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR

[3] Stenström B., Rings of quotients, Springer, Berlin, 1975 | MR | Zbl

[4] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR