On left distributivity of some right distributive rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 289-300
Let $A$ be a right distributive right nonsingular ring. Assume that for every element $a\in A$ there exists a natural number $n$ such that $a^nA\subseteq Aa$. Then $A$ is a left distributive ring.
@article{FPM_1995_1_1_a16,
author = {A. A. Tuganbaev},
title = {On left distributivity of some right distributive rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {289--300},
year = {1995},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a16/}
}
A. A. Tuganbaev. On left distributivity of some right distributive rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 289-300. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a16/
[1] Gräter J., “Strong right $D$-domains”, Monatsh. Math., 107 \mbox (1989), 189–205 | DOI | MR | Zbl
[2] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR
[3] Stenström B., Rings of quotients, Springer, Berlin, 1975 | MR | Zbl
[4] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR