Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 281-288
It is proved that any surface $S^{*}$ isometric to a given compact surface $S$ and disposed sufficiently close to $S$ generates a quasi-conformal mapping of $S$ onto itself. On the base of this result it is proved that a compact surface admitting sliding bendings onto itself is topologically a sphere or a torus and its intrinsic metric is of rotation type.
@article{FPM_1995_1_1_a15,
author = {I. Kh. Sabitov},
title = {Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {281--288},
year = {1995},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a15/}
}
TY - JOUR AU - I. Kh. Sabitov TI - Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 281 EP - 288 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a15/ LA - ru ID - FPM_1995_1_1_a15 ER -
%0 Journal Article %A I. Kh. Sabitov %T Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself %J Fundamentalʹnaâ i prikladnaâ matematika %D 1995 %P 281-288 %V 1 %N 1 %U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a15/ %G ru %F FPM_1995_1_1_a15
I. Kh. Sabitov. Quasi-conformal mappings of a surface generated by its isometric transformation, and bendings of the surface onto itself. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 281-288. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a15/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, M., 1959, 628 pp. | MR | Zbl
[2] M. Spivak, A comprehensive introduction to Differential Geometry, 5, Publish or Perish, Berkeley, 1979 | MR | Zbl
[3] E. Rembs, “Infinitesimal Verbiegungen von Flächen in sich”, Math. Nachr., 16 (1957), 134–136 | DOI | MR | Zbl