Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_1_a14, author = {Yu. G. Prokhorov}, title = {On general elephant problem for three-dimensional $\mathbf{Q}${-Fano} fiber spaces over a surface}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {263--280}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/} }
TY - JOUR AU - Yu. G. Prokhorov TI - On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 263 EP - 280 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/ LA - ru ID - FPM_1995_1_1_a14 ER -
Yu. G. Prokhorov. On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 263-280. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/
[1] Alexeev V., “General elephants of $Q$-Fano 3-folds”, Compositio Math., 91 (1994), 91–116 | MR | Zbl
[2] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984 | MR | Zbl
[3] Catanese F., “Automorphosms of rational double points and moduli spaces of surfaces of general type”, Compositio Math., 61:1 (1987), 81–102 | MR | Zbl
[4] Cutkosky S., “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl
[5] Klemens Kh., Kollar Ya., Mori S., Mnogomernaya kompleksnaya geometriya, Mir, M., 1993
[6] Corti A., Factoring birational maps of threefolds after Sarkisov, Preprint, 1992 | MR
[7] Kawamata Y., “Crepant blowing-ups of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. Math., 127 (1988), 93–163 | DOI | MR | Zbl
[8] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Algebraic Geometry, Sendai, Adv. Stud. in Pure Math., 10, 1985, 283–360 | MR
[9] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geometry, 1 (1992), 429–448 | MR | Zbl
[10] Kollár J., Mori S., “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl
[11] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl
[12] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl
[13] Reid M., “Minimal models of canonical threefolds”, Algebraic Varieties and Analitic Varieties, Adv. Stud. in Pure Math., 1, ed. S. Iitaka, Kinokunya, Tokyo; North-Holland, Amsterdam, 1983, 131–180 | MR
[14] Reid M., “Young persons guide to canonical singularities”, Algebraic Geometry, Bowdoin, 46, 1985, 345–414 | MR
[15] Reid M., Birational geometry of 3-folds according to Sarkisov, Preprint, 1991 | MR
[16] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46 (1982), 371–408 | MR | Zbl
[17] Sarkisov V. G., Birational maps of standard $Q$-Fano fiberings, Preprint, 1989
[18] Shokurov V. V., 3-fold log models, Preprint, 1994 | MR
[19] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl
[20] Kollár J. et al., Flips and abundance for threefolds, Astérisque, 211, 1992 | MR