On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 263-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $\mathbf{Q}$-Fano fiber spaces $X/S$ over a surface, i. e., a three-dimensional variety $X$ with terminal $\mathbf{Q}$-factorial singularities and a projective morphism $\varphi:X\to S$ onto a normal surface $S$ such that $\varphi_*\mathcal{O}_X=\mathcal{O}_S$, $\rho(X/S)=1$ and $-K_X$ $\varphi$-ample. In this situation we discuss Reid's conjecture on general elephants, i. e. on general members of the linear system $\left|-K_X+\varphi^*h\right|$. We prove that the surface $S$ has only cyclic quotient singularities, besides if for $X/S$ the elephants conjecture is true, then singularities of $S$ are Du Val singularities of the type $A_n$. In the last case some conditions on singularities of $X$ and $S$ are obtained.
@article{FPM_1995_1_1_a14,
     author = {Yu. G. Prokhorov},
     title = {On general elephant problem for three-dimensional $\mathbf{Q}${-Fano} fiber spaces over a surface},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {263--280},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 263
EP  - 280
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/
LA  - ru
ID  - FPM_1995_1_1_a14
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 263-280
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/
%G ru
%F FPM_1995_1_1_a14
Yu. G. Prokhorov. On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 263-280. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/

[1] Alexeev V., “General elephants of $Q$-Fano 3-folds”, Compositio Math., 91 (1994), 91–116 | MR | Zbl

[2] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984 | MR | Zbl

[3] Catanese F., “Automorphosms of rational double points and moduli spaces of surfaces of general type”, Compositio Math., 61:1 (1987), 81–102 | MR | Zbl

[4] Cutkosky S., “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl

[5] Klemens Kh., Kollar Ya., Mori S., Mnogomernaya kompleksnaya geometriya, Mir, M., 1993

[6] Corti A., Factoring birational maps of threefolds after Sarkisov, Preprint, 1992 | MR

[7] Kawamata Y., “Crepant blowing-ups of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. Math., 127 (1988), 93–163 | DOI | MR | Zbl

[8] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Algebraic Geometry, Sendai, Adv. Stud. in Pure Math., 10, 1985, 283–360 | MR

[9] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geometry, 1 (1992), 429–448 | MR | Zbl

[10] Kollár J., Mori S., “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl

[11] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[12] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[13] Reid M., “Minimal models of canonical threefolds”, Algebraic Varieties and Analitic Varieties, Adv. Stud. in Pure Math., 1, ed. S. Iitaka, Kinokunya, Tokyo; North-Holland, Amsterdam, 1983, 131–180 | MR

[14] Reid M., “Young persons guide to canonical singularities”, Algebraic Geometry, Bowdoin, 46, 1985, 345–414 | MR

[15] Reid M., Birational geometry of 3-folds according to Sarkisov, Preprint, 1991 | MR

[16] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46 (1982), 371–408 | MR | Zbl

[17] Sarkisov V. G., Birational maps of standard $Q$-Fano fiberings, Preprint, 1989

[18] Shokurov V. V., 3-fold log models, Preprint, 1994 | MR

[19] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[20] Kollár J. et al., Flips and abundance for threefolds, Astérisque, 211, 1992 | MR