On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 263-280
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $\mathbf{Q}$-Fano fiber spaces $X/S$ over a surface, i. e., a three-dimensional variety $X$ with terminal $\mathbf{Q}$-factorial singularities and a projective morphism $\varphi:X\to S$ onto a normal surface $S$ such that $\varphi_*\mathcal{O}_X=\mathcal{O}_S$, $\rho(X/S)=1$ and $-K_X$ $\varphi$-ample. In this situation we discuss Reid's conjecture on general elephants, i. e. on general members of the linear system $\left|-K_X+\varphi^*h\right|$. We prove that the surface $S$ has only cyclic quotient singularities, besides if for $X/S$ the elephants conjecture is true, then singularities of $S$ are Du Val singularities of the type $A_n$. In the last case some conditions on singularities of $X$ and $S$ are obtained.
@article{FPM_1995_1_1_a14,
author = {Yu. G. Prokhorov},
title = {On general elephant problem for three-dimensional $\mathbf{Q}${-Fano} fiber spaces over a surface},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {263--280},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/}
}
TY - JOUR
AU - Yu. G. Prokhorov
TI - On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 1995
SP - 263
EP - 280
VL - 1
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/
LA - ru
ID - FPM_1995_1_1_a14
ER -
Yu. G. Prokhorov. On general elephant problem for three-dimensional $\mathbf{Q}$-Fano fiber spaces over a surface. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 263-280. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a14/