Locally convex modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 221-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a non-archimedean valued field, $A\subseteq K$ be its integer ring. This paper is devoted to the study of the locally convex topological unital $A$-modules. These modules are very close to the vector spaces over non-archimedean valued fields. In particular, the topology of these modules can be determined by some system $\Gamma$ of semipseudonorms. Monna demonstrated that $p$-adic analogue of Hahn–Banach theorem can be proved for the locally convex vector spaces over non-archimedean valued fields. One can give the definitions of $q$-injectivity, where $q$ is the seminorm which is determined on this module, and of the strong topological injectivity. It means that any $q$-bounded homomorphism can be extended with the same seminorm, where $q$ is a some fixed seminorm in the first case, and an arbitrary seminorm $q\in\Gamma$ in the second one. The necessary and sufficient conditions of $q$-injectivity and strong topological injectivity for torsion free modules are given. At last, the necessary and sufficient conditions for topological injectivity of a locally convex $A$-module in the case when $A$ is the integer ring of the main local compact non-archimedean valued field are the following ones: a topological module is complete and Baire condition holds for any continuous homomorphism (here topological injectivity means that any continuous homomorphism of a submodule can be extended to a continuous homomorphism of the whole module).
@article{FPM_1995_1_1_a11,
     author = {Z. S. Lipkina},
     title = {Locally convex modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {221--228},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a11/}
}
TY  - JOUR
AU  - Z. S. Lipkina
TI  - Locally convex modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 221
EP  - 228
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a11/
LA  - ru
ID  - FPM_1995_1_1_a11
ER  - 
%0 Journal Article
%A Z. S. Lipkina
%T Locally convex modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 221-228
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a11/
%G ru
%F FPM_1995_1_1_a11
Z. S. Lipkina. Locally convex modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 221-228. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a11/

[1] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[2] A. F. Monna, Analyse non-archimedienne, Berlyn, 1970

[3] O. Goldman, C. Sah, “Locally compact rings of special type”, J. Algebra, 11 (1969), 363–454 | DOI | MR | Zbl

[4] A. W. Ingleton, “Hahn–Banach theorem for nonarchimedean valued fields”, Proc. Cambridge Phil. Soc., 48 (1952), 41–45 | DOI | MR | Zbl