Fractional Derivatives in Spaces of Generalized Functions
Fractional calculus and applied analysis, Tome 14 (2011) no. 1, pp. 125-137.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We generalize the two forms of the fractional derivatives (in Riemann-Liouville and Caputo sense) to spaces of generalized functions using appropriate techniques such as the multiplication of absolutely continuous function by the Heaviside function, and the analytical continuation. As an application, we give the two forms of the fractional derivatives of discontinuous functions in spaces of distributions.
Keywords: Fractional Derivatives, Spaces of Generalized Functions, Fractional Derivatives of Discontinuous Function, Analytical Continuation
@article{FCAA_2011_14_1_a7,
     author = {Stojanovi\'c, Mirjana},
     title = {Fractional {Derivatives} in {Spaces} of {Generalized} {Functions}},
     journal = {Fractional calculus and applied analysis},
     pages = {125--137},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a7/}
}
TY  - JOUR
AU  - Stojanović, Mirjana
TI  - Fractional Derivatives in Spaces of Generalized Functions
JO  - Fractional calculus and applied analysis
PY  - 2011
SP  - 125
EP  - 137
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a7/
LA  - en
ID  - FCAA_2011_14_1_a7
ER  - 
%0 Journal Article
%A Stojanović, Mirjana
%T Fractional Derivatives in Spaces of Generalized Functions
%J Fractional calculus and applied analysis
%D 2011
%P 125-137
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a7/
%G en
%F FCAA_2011_14_1_a7
Stojanović, Mirjana. Fractional Derivatives in Spaces of Generalized Functions. Fractional calculus and applied analysis, Tome 14 (2011) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a7/