Nonlinear Time-Fractional Differential Equations in Combustion Science
Fractional calculus and applied analysis, Tome 14 (2011) no. 1, pp. 80-93.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion processes with similarity parameter ν/2 > 0, the evolution equations emerge to be nonlinear time-fractional differential equations of order 1−ν/2 with a non-Gaussian underlying diffusion process.
Keywords: Time-Fractional Derivative, Nonlinear Equation, Anomalous Diffusion, Combustion Science, Premixed Flame Ball
@article{FCAA_2011_14_1_a4,
     author = {Pagnini, Gianni},
     title = {Nonlinear {Time-Fractional} {Differential} {Equations} in {Combustion} {Science}},
     journal = {Fractional calculus and applied analysis},
     pages = {80--93},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a4/}
}
TY  - JOUR
AU  - Pagnini, Gianni
TI  - Nonlinear Time-Fractional Differential Equations in Combustion Science
JO  - Fractional calculus and applied analysis
PY  - 2011
SP  - 80
EP  - 93
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a4/
LA  - en
ID  - FCAA_2011_14_1_a4
ER  - 
%0 Journal Article
%A Pagnini, Gianni
%T Nonlinear Time-Fractional Differential Equations in Combustion Science
%J Fractional calculus and applied analysis
%D 2011
%P 80-93
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a4/
%G en
%F FCAA_2011_14_1_a4
Pagnini, Gianni. Nonlinear Time-Fractional Differential Equations in Combustion Science. Fractional calculus and applied analysis, Tome 14 (2011) no. 1, pp. 80-93. http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a4/