On the Quotient Function Employed in the Blind Source Separation Problem
Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 495-506.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

On the blind source separation problem, there is a method to use the quotient function of complex valued time-frequency informations of two ob-served signals. By studying the quotient function, we can estimate the number of sources under some assumptions. In our previous papers, we gave a mathematical formulation which is available for the sources with-out time delay. However, in general, we can not ignore the time delay. In this paper, we will reformulate our basic theorems related to the method of estimating the number of sources to be available for more general cases.
Keywords: Quotient Function, Cumulative Distribution Function, Blind Source Separation
@article{FCAA_2010_13_5_a3,
     author = {Fujita, K.},
     title = {On the {Quotient} {Function} {Employed} in the {Blind} {Source} {Separation} {Problem}},
     journal = {Fractional calculus and applied analysis},
     pages = {495--506},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a3/}
}
TY  - JOUR
AU  - Fujita, K.
TI  - On the Quotient Function Employed in the Blind Source Separation Problem
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 495
EP  - 506
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a3/
LA  - en
ID  - FCAA_2010_13_5_a3
ER  - 
%0 Journal Article
%A Fujita, K.
%T On the Quotient Function Employed in the Blind Source Separation Problem
%J Fractional calculus and applied analysis
%D 2010
%P 495-506
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a3/
%G en
%F FCAA_2010_13_5_a3
Fujita, K. On the Quotient Function Employed in the Blind Source Separation Problem. Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 495-506. http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a3/