A Note on Univalent Functions with Finitely many Coefficients
Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 475-486.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The main object of this article is to introduce sufficient conditions of univalency for a class of analytic functions with finitely many coefficients defined by approximate functions due to Suffridge on the unit disk of the complex plane whose image is saddle-shaped. Sandwich theorem is also discussed.
Keywords: Univalent Function, Saddle-like, Subordination, Superordination, Sandwich Theorem
@article{FCAA_2010_13_5_a1,
     author = {Darus, M. and Ibrahim, R.},
     title = {A {Note} on {Univalent} {Functions} with {Finitely} many {Coefficients}},
     journal = {Fractional calculus and applied analysis},
     pages = {475--486},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a1/}
}
TY  - JOUR
AU  - Darus, M.
AU  - Ibrahim, R.
TI  - A Note on Univalent Functions with Finitely many Coefficients
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 475
EP  - 486
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a1/
LA  - en
ID  - FCAA_2010_13_5_a1
ER  - 
%0 Journal Article
%A Darus, M.
%A Ibrahim, R.
%T A Note on Univalent Functions with Finitely many Coefficients
%J Fractional calculus and applied analysis
%D 2010
%P 475-486
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a1/
%G en
%F FCAA_2010_13_5_a1
Darus, M.; Ibrahim, R. A Note on Univalent Functions with Finitely many Coefficients. Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 475-486. http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a1/