Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values
Fractional calculus and applied analysis, Tome 11 (2008) no. 1, pp. 57-75
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The paper deals with analysis of several techniques and methods for the
numerical evaluation of the Wright function. Even if the focus is mainly on
the real arguments’ values, the methods introduced here can be used in the
complex plane, too. The approaches presented in the paper include integral
representations of the Wright function, its asymptotic expansions and
summation of series. Because the Wright function depends on two parameters
and on one (in general case, complex) argument, different numerical
techniques are employed for different parameters’ values. In every case,
estimates for accuracy of the computations are provided. The ideas and
techniques employed in the paper can be used for numerical evaluation of
other functions of the hypergeometric type.
Keywords:
Wright Function, Special Functions, Integral Representations, Numerical Evaluation of Special Functions, Asymptotic Representations, 33E12, 65D20, 33F05, 30E15
@article{FCAA_2008_11_1_a3,
author = {Luchko, Yury},
title = {Algorithms for {Evaluation} of the {Wright} {Function} for the {Real} {Arguments{\textquoteright}} {Values}},
journal = {Fractional calculus and applied analysis},
pages = {57--75},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a3/}
}
TY - JOUR AU - Luchko, Yury TI - Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values JO - Fractional calculus and applied analysis PY - 2008 SP - 57 EP - 75 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a3/ LA - en ID - FCAA_2008_11_1_a3 ER -
Luchko, Yury. Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values. Fractional calculus and applied analysis, Tome 11 (2008) no. 1, pp. 57-75. http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a3/