Pseudo-Differential Operators in a Wave Diffraction Problem with Impedance Conditions
Fractional calculus and applied analysis, Tome 11 (2008) no. 1, pp. 15-26
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We consider an impedance boundary-value problem for the Helmholtz
equation which models a wave diffraction problem with imperfect conductivity
on a strip. Pseudo-differential operators are used to deal with this
wave diffraction problem. Therefore, single and double layer potentials allow
a reformulation of the problem into a system of integral equations. By
using operator theoretical methods, the well-posedness of the problem is
obtained for a set of impedance parameters, and in a framework of Bessel
potential spaces.
Keywords:
Pseudo-Differential Operator, Helmholtz Equation, Boundary-Value Problem, Wave Diffraction, Hankel Function, 35J05, 35J25, 35C15, 47H50, 47G30
@article{FCAA_2008_11_1_a0,
author = {Castro, L.P. and Kapanadze, D.},
title = {Pseudo-Differential {Operators} in a {Wave} {Diffraction} {Problem} with {Impedance} {Conditions}},
journal = {Fractional calculus and applied analysis},
pages = {15--26},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a0/}
}
TY - JOUR AU - Castro, L.P. AU - Kapanadze, D. TI - Pseudo-Differential Operators in a Wave Diffraction Problem with Impedance Conditions JO - Fractional calculus and applied analysis PY - 2008 SP - 15 EP - 26 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a0/ LA - en ID - FCAA_2008_11_1_a0 ER -
%0 Journal Article %A Castro, L.P. %A Kapanadze, D. %T Pseudo-Differential Operators in a Wave Diffraction Problem with Impedance Conditions %J Fractional calculus and applied analysis %D 2008 %P 15-26 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a0/ %G en %F FCAA_2008_11_1_a0
Castro, L.P.; Kapanadze, D. Pseudo-Differential Operators in a Wave Diffraction Problem with Impedance Conditions. Fractional calculus and applied analysis, Tome 11 (2008) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/FCAA_2008_11_1_a0/