Smoothness Properties of Solutions of Caputo-Type Fractional Differential Equations
Fractional calculus and applied analysis, Tome 10 (2007) no. 2, pp. 151-160.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We consider ordinary fractional differential equations with Caputo-type differential operators with smooth right-hand sides. In various places in the literature one can find the statement that such equations cannot have smooth solutions. We prove that this is wrong, and we give a full characterization of the situations where smooth solutions exist. The results can be extended to a class of weakly singular Volterra integral equations.
Keywords: Fractional Differential Equation, Initial Value Problem, Caputo Derivative, Smoothness, Weakly Singular Volterra Integral Equation, 26A33, 34A25, 45D05, 45E10
@article{FCAA_2007_10_2_a4,
     author = {Diethelm, Kai},
     title = {Smoothness {Properties} of {Solutions} of {Caputo-Type} {Fractional} {Differential} {Equations}},
     journal = {Fractional calculus and applied analysis},
     pages = {151--160},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a4/}
}
TY  - JOUR
AU  - Diethelm, Kai
TI  - Smoothness Properties of Solutions of Caputo-Type Fractional Differential Equations
JO  - Fractional calculus and applied analysis
PY  - 2007
SP  - 151
EP  - 160
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a4/
LA  - en
ID  - FCAA_2007_10_2_a4
ER  - 
%0 Journal Article
%A Diethelm, Kai
%T Smoothness Properties of Solutions of Caputo-Type Fractional Differential Equations
%J Fractional calculus and applied analysis
%D 2007
%P 151-160
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a4/
%G en
%F FCAA_2007_10_2_a4
Diethelm, Kai. Smoothness Properties of Solutions of Caputo-Type Fractional Differential Equations. Fractional calculus and applied analysis, Tome 10 (2007) no. 2, pp. 151-160. http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a4/