q-Heat Operator and q-Poisson’s Operator
Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 265-286.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we study the q-heat and q-Poisson’s operators associated with the q-operator ∆q (see[5]). We begin by summarizing some statements concerning the q-even translation operator Tx,q, defined by Fitouhi and Bouzeffour in [5]. Then, we establish some basic properties of the q-heat semi-group such as boundedness and positivity. In the second part, we introduce the q-Poisson operator P^t, and address its main properties. We show in particular how these operators can be used to solve the initial and boundary value problems related to the q-heat and q-Laplace equation respectively.
Keywords: q-Special Functions, q-Operators, q-Transforms, q-Heat Equation, 33D15, 33D90, 39A13
@article{FCAA_2006_9_3_a4,
     author = {Mabrouk, Han\`ene},
     title = {q-Heat {Operator} and {q-Poisson{\textquoteright}s} {Operator}},
     journal = {Fractional calculus and applied analysis},
     pages = {265--286},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a4/}
}
TY  - JOUR
AU  - Mabrouk, Hanène
TI  - q-Heat Operator and q-Poisson’s Operator
JO  - Fractional calculus and applied analysis
PY  - 2006
SP  - 265
EP  - 286
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a4/
LA  - en
ID  - FCAA_2006_9_3_a4
ER  - 
%0 Journal Article
%A Mabrouk, Hanène
%T q-Heat Operator and q-Poisson’s Operator
%J Fractional calculus and applied analysis
%D 2006
%P 265-286
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a4/
%G en
%F FCAA_2006_9_3_a4
Mabrouk, Hanène. q-Heat Operator and q-Poisson’s Operator. Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 265-286. http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a4/