An Expansion Formula for Fractional Derivatives and its Application
Fractional calculus and applied analysis, Tome 7 (2004) no. 3, pp. 365-378
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
An expansion formula for fractional derivatives given as in form of a
series involving function and moments of its k-th derivative is derived. The
convergence of the series is proved and an estimate of the reminder is given.
The form of the fractional derivative given here is especially suitable in
deriving restrictions, in a form of internal variable theory, following from
the second law of thermodynamics, when applied to linear viscoelasticity of
fractional derivative type.
Keywords:
Fractional Derivatives, Moments of the k-th Derivative, 26A33
@article{FCAA_2004_7_3_a5,
author = {Atanackovic, T. and Stankovic, B.},
title = {An {Expansion} {Formula} for {Fractional} {Derivatives} and its {Application}},
journal = {Fractional calculus and applied analysis},
pages = {365--378},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2004_7_3_a5/}
}
TY - JOUR AU - Atanackovic, T. AU - Stankovic, B. TI - An Expansion Formula for Fractional Derivatives and its Application JO - Fractional calculus and applied analysis PY - 2004 SP - 365 EP - 378 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2004_7_3_a5/ LA - en ID - FCAA_2004_7_3_a5 ER -
Atanackovic, T.; Stankovic, B. An Expansion Formula for Fractional Derivatives and its Application. Fractional calculus and applied analysis, Tome 7 (2004) no. 3, pp. 365-378. http://geodesic.mathdoc.fr/item/FCAA_2004_7_3_a5/