Quasi-similarity, entropy and disjointness of ergodic actions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We answer a question posed by Vershik regarding connections between quasi-similarity of dynamical systems and Kolmogorov entropy. We prove that all Bernoulli actions of a given countably infinite group are quasi-similar to each other. The existence of non-Bernoulli actions in the same quasi-similarity class is an open problem. A notion opposite to quasi-similarity is that of disjointness (or independence) of actions. Pinsker proved that a deterministic action is independent from an action with completely positive entropy. Using joinings, we obtain the following generalization of Pinsker's theorem: an action with zero $P$-entropy (an invariant defined by Kirillov and Kushnirenko) and an action with completely positive $P$-entropy are disjoint.
Keywords: disjointness of measure-preserving actions, quasi-similarity, entropy invariants
Mots-clés : Poisson suspensions.
@article{FAA_2024_58_1_a7,
     author = {Valerii Ryzhikov and Jean-Paul Thouvenot},
     title = {Quasi-similarity, entropy and disjointness of ergodic actions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a7/}
}
TY  - JOUR
AU  - Valerii Ryzhikov
AU  - Jean-Paul Thouvenot
TI  - Quasi-similarity, entropy and disjointness of ergodic actions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 117
EP  - 124
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a7/
LA  - ru
ID  - FAA_2024_58_1_a7
ER  - 
%0 Journal Article
%A Valerii Ryzhikov
%A Jean-Paul Thouvenot
%T Quasi-similarity, entropy and disjointness of ergodic actions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 117-124
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a7/
%G ru
%F FAA_2024_58_1_a7
Valerii Ryzhikov; Jean-Paul Thouvenot. Quasi-similarity, entropy and disjointness of ergodic actions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 117-124. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a7/

[1] A. N. Kolmogorov, “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, Dokl. AN SSSR, 119:5 (1958), 861–864 | Zbl

[2] Ya. G. Sinai, “O slabom izomorfizme preobrazovanii s invariantnoi meroi”, Matem. sb., 63(105):1 (1964), 23–42

[3] D. Ornstein, “Two Bernoulli shifts with infinite entropy are isomorphic”, Adv. in Math., 5 (1970), 339–348 | DOI | MR

[4] A. M. Vershik, “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl

[5] K. Fraçzek, M. Lemanczyk, “A note on quasi-similarity of Koopman operators”, J. Lond. Math. Soc., II Ser., 82:2 (2010), 361–375 | DOI | MR | Zbl

[6] J.-P. Thouvenot, “Remarques sur les systèmes dynamiques donnés avec plusieurs facteurs”, Israel J. Math., 21:2–3 (1975), 215–232 | DOI | MR | Zbl

[7] M. S. Pinsker, “Dinamicheskie sistemy s vpolne polozhitelnoi i nulevoi entropiei”, Dokl. AN SSSR, 133:5 (1960), 1025–1026 | Zbl

[8] A. M. Stepin, “Sdvigi Bernulli na gruppakh”, Dokl. AN SSSR, 223:2 (1975), 300–302 | MR | Zbl

[9] B. Seward, “Bernoulli shifts with bases of equal entropy are isomorphic”, J. Mod. Dyn., 18 (2022), 345–362 | DOI | MR | Zbl

[10] M. Smorodinsky, J.-P. Thouvenot, “Bernoulli factors that span a transformation”, Israel J. Math., 32:1 (1979), 39–43 | DOI | MR | Zbl

[11] A. A. Kirillov, “Dinamicheskie sistemy, faktory i predstavleniya grupp”, UMN, 22:5(137) (1967), 67–80 | MR | Zbl

[12] A. G. Kushnirenko, “O metricheskikh invariantakh tipa entropii”, UMN, 22:5(137) (1967), 57–65 | MR | Zbl

[13] V. V. Ryzhikov, “Kompaktnye semeistva i tipichnye entropiinye invarianty sokhranyayuschikh meru deistvii”, Trudy MMO, 82:1 (2021), 137–145 | Zbl

[14] J.-P. Thouvenot, “Entropy, isomorphism and equivalence in ergodic theory”, Handbook of Dynamical Systems, v. IA, North Holland, Amsterdam, 2002, 205–238 | MR | Zbl

[15] V. V. Ryzhikov, “O sokhranyayuschikh meru preobrazovaniyakh ranga odin”, Trudy MMO, 81:2 (2020), 281–318 | Zbl

[16] V. V. Ryzhikov, “Spektry samopodobnykh ergodicheskikh deistvii”, Matem. zametki, 113:2 (2023), 273–282 | DOI | Zbl

[17] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy diffeomorfizmov”, UMN, 30:6(186) (1975), 3–50 | Zbl

[18] R. S. Ismagilov, “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov prostranstva $R^n$, $n\geq 2$”, Funkts. analiz i ego pril., 9:2 (1975), 71–72 | MR | Zbl

[19] É. Janvresse, T. Meyerovitch, E. Roy, T. de la Rue, “Poisson suspensions and entropy for infinite transformations”, Trans. Amer. Math. Soc., 362:6 (2010), 3069–3094 | DOI | MR | Zbl

[20] A. M. Vershik, G. A. Veprev, P. B. Zatitskii, “Dinamika metrik v prostranstvakh s meroi i masshtabirovannaya entropiya”, UMN, 78:3(471) (2023), 53–114 | DOI | MR