Combinatorial results implied by many zero divisors in a group ring
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 104-116

Voir la notice de l'article provenant de la source Math-Net.Ru

In a paper of Croot, Lev and Pach and a later paper of Ellenberg and Gijswijt, it was proved that for a group $G=G_0^n$, where $G_0\ne \{1,-1\}^m$ is a fixed finite Abelian group and $n$ is large, any subset $A\subset G$ without 3-progressions (triples $x$, $y$, $z$ of different elements with $xy=z^2$) contains at most $|G|^{1-c}$ elements, where $c>0$ is a constant depending only on $G_0$. This is known to be false when $G$ is, say, a large cyclic group. The aim of this note is to show that the algebraic property corresponding to this difference is the following: in the first case, a group algebra $\mathbb{F}[G]$ over a suitable field $\mathbb{F}$ contains a subspace $X$ with codimension at most $|X|^{1-c}$ such that $X^3=0$. We discuss which bounds are obtained for finite Abelian $p$-groups and for some matrix $p$-groups: the Heisenberg group over $\mathbb{F}_p$ and the unitriangular group over $\mathbb{F}_p$. We also show how the method allows us to generalize the results of [14] and [12].
Keywords: group ring, zero divisors, $p$-groups.
Mots-clés : arithmtic progressions
@article{FAA_2024_58_1_a6,
     author = {Fedor Petrov},
     title = {Combinatorial results implied by many zero divisors in a group ring},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {104--116},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/}
}
TY  - JOUR
AU  - Fedor Petrov
TI  - Combinatorial results implied by many zero divisors in a group ring
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 104
EP  - 116
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/
LA  - ru
ID  - FAA_2024_58_1_a6
ER  - 
%0 Journal Article
%A Fedor Petrov
%T Combinatorial results implied by many zero divisors in a group ring
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 104-116
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/
%G ru
%F FAA_2024_58_1_a6
Fedor Petrov. Combinatorial results implied by many zero divisors in a group ring. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 104-116. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/