Combinatorial results implied by many zero divisors in a group ring
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 104-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a paper of Croot, Lev and Pach and a later paper of Ellenberg and Gijswijt, it was proved that for a group $G=G_0^n$, where $G_0\ne \{1,-1\}^m$ is a fixed finite Abelian group and $n$ is large, any subset $A\subset G$ without 3-progressions (triples $x$, $y$, $z$ of different elements with $xy=z^2$) contains at most $|G|^{1-c}$ elements, where $c>0$ is a constant depending only on $G_0$. This is known to be false when $G$ is, say, a large cyclic group. The aim of this note is to show that the algebraic property corresponding to this difference is the following: in the first case, a group algebra $\mathbb{F}[G]$ over a suitable field $\mathbb{F}$ contains a subspace $X$ with codimension at most $|X|^{1-c}$ such that $X^3=0$. We discuss which bounds are obtained for finite Abelian $p$-groups and for some matrix $p$-groups: the Heisenberg group over $\mathbb{F}_p$ and the unitriangular group over $\mathbb{F}_p$. We also show how the method allows us to generalize the results of [14] and [12].
Keywords: group ring, zero divisors, $p$-groups.
Mots-clés : arithmtic progressions
@article{FAA_2024_58_1_a6,
     author = {Fedor Petrov},
     title = {Combinatorial results implied by many zero divisors in a group ring},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {104--116},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/}
}
TY  - JOUR
AU  - Fedor Petrov
TI  - Combinatorial results implied by many zero divisors in a group ring
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 104
EP  - 116
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/
LA  - ru
ID  - FAA_2024_58_1_a6
ER  - 
%0 Journal Article
%A Fedor Petrov
%T Combinatorial results implied by many zero divisors in a group ring
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 104-116
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/
%G ru
%F FAA_2024_58_1_a6
Fedor Petrov. Combinatorial results implied by many zero divisors in a group ring. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 104-116. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/

[1] N. Alon, “Combinatorial Nullstellensatz”, Combin. Probab. Comput., 8:1–2 (1999), 7–29 | DOI | MR | Zbl

[2] E. Croot, V. Lev, P. Pach, “Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small”, Ann. of Math., 185:1 (2017), 331–337 | DOI | MR | Zbl

[3] J. Ellenberg, D. Gijswijt, “On large subsets of $\mathbb{F_q}^n$ with no three-term arithmetic progression”, Ann. of Math., 185:1 (2017), 339–343 | DOI | MR | Zbl

[4] E. Naslund, W. Sawin, “Upper bounds for sunflower-free sets”, Forum Math. Sigma, 5 (2017), e15 | DOI | MR | Zbl

[5] I. Bogdanov, The answer to Mathoverflow question http://mathoverflow.net/questions/239222/vector-with-many-non-zero-coordinates

[6] J. E. Olson, “A combinatorial problem on finite Abelian groups. I”, J. Number Theory, 1:1 (1969), 8–10 | DOI | MR | Zbl

[7] K. O'Bryant, “Sets of integers that do not contain long arithmetic progressions”, Electron. J. Combin., 18:1 (2011), 59 | MR

[8] R. Meshulam, “On the maximal rank in a subspace of matrices”, Quart. J. Math., 36:142 (1985), 225–229 | DOI | MR | Zbl

[9] R. Kleinberg, W. Sawin, D. Speyer, “The growth rate of tri-colored sum-free sets”, Discrete Anal., 2018, 12 | MR | Zbl

[10] S. Norin, “A distribution on triples with maximum entropy marginal”, Forum Math. Sigma, 7 (2019), e46 | DOI | MR | Zbl

[11] L. Pebody, “Proof of a conjecture of Kleinberg–Sawin–Speyer”, Discrete Anal., 2018, 13 | MR | Zbl

[12] J. Ellenberg, “Sumsets as unions of sumsets of subsets”, Discrete Anal., 2017, 14 | MR | Zbl

[13] D. Speyer, Blog post https://sbseminar.wordpress.com/2016/07/08/bounds-for-sum-free-sets-in-prime-power-cyclic-groups-three-ways/

[14] J. Blasiak, T. Church, H. Cohn, J. A. Grochow, E. Naslund, W. F. Sawin, C. Umans, “On cap sets and the group-theoretic approach to matrix multiplication”, Discrete Anal., 2017, 3 | MR | Zbl

[15] F. Petrov, C. Pohoata, “Improved bounds for progression-free sets in $C_8^n$”, Israel J. Math., 236:1 (2020), 345–363 | DOI | MR | Zbl

[16] K. Pratt, A Note on slice rank and matchings in groups, arXiv: 2210.05488