Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2024_58_1_a6, author = {Fedor Petrov}, title = {Combinatorial results implied by many zero divisors in a group ring}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {104--116}, publisher = {mathdoc}, volume = {58}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/} }
Fedor Petrov. Combinatorial results implied by many zero divisors in a group ring. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 104-116. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a6/
[1] N. Alon, “Combinatorial Nullstellensatz”, Combin. Probab. Comput., 8:1–2 (1999), 7–29 | DOI | MR | Zbl
[2] E. Croot, V. Lev, P. Pach, “Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small”, Ann. of Math., 185:1 (2017), 331–337 | DOI | MR | Zbl
[3] J. Ellenberg, D. Gijswijt, “On large subsets of $\mathbb{F_q}^n$ with no three-term arithmetic progression”, Ann. of Math., 185:1 (2017), 339–343 | DOI | MR | Zbl
[4] E. Naslund, W. Sawin, “Upper bounds for sunflower-free sets”, Forum Math. Sigma, 5 (2017), e15 | DOI | MR | Zbl
[5] I. Bogdanov, The answer to Mathoverflow question http://mathoverflow.net/questions/239222/vector-with-many-non-zero-coordinates
[6] J. E. Olson, “A combinatorial problem on finite Abelian groups. I”, J. Number Theory, 1:1 (1969), 8–10 | DOI | MR | Zbl
[7] K. O'Bryant, “Sets of integers that do not contain long arithmetic progressions”, Electron. J. Combin., 18:1 (2011), 59 | MR
[8] R. Meshulam, “On the maximal rank in a subspace of matrices”, Quart. J. Math., 36:142 (1985), 225–229 | DOI | MR | Zbl
[9] R. Kleinberg, W. Sawin, D. Speyer, “The growth rate of tri-colored sum-free sets”, Discrete Anal., 2018, 12 | MR | Zbl
[10] S. Norin, “A distribution on triples with maximum entropy marginal”, Forum Math. Sigma, 7 (2019), e46 | DOI | MR | Zbl
[11] L. Pebody, “Proof of a conjecture of Kleinberg–Sawin–Speyer”, Discrete Anal., 2018, 13 | MR | Zbl
[12] J. Ellenberg, “Sumsets as unions of sumsets of subsets”, Discrete Anal., 2017, 14 | MR | Zbl
[13] D. Speyer, Blog post https://sbseminar.wordpress.com/2016/07/08/bounds-for-sum-free-sets-in-prime-power-cyclic-groups-three-ways/
[14] J. Blasiak, T. Church, H. Cohn, J. A. Grochow, E. Naslund, W. F. Sawin, C. Umans, “On cap sets and the group-theoretic approach to matrix multiplication”, Discrete Anal., 2017, 3 | MR | Zbl
[15] F. Petrov, C. Pohoata, “Improved bounds for progression-free sets in $C_8^n$”, Israel J. Math., 236:1 (2020), 345–363 | DOI | MR | Zbl
[16] K. Pratt, A Note on slice rank and matchings in groups, arXiv: 2210.05488