Intrinsic ergodicity, generators, and symbolic representations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 50-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct natural symbolic representations of intrinsically ergodic, but not necessarily expansive, principal algebraic actions of countably infinite amenable groups and use these representations to find explicit generating partitions (up to null-sets) for such actions.
Mots-clés : principal algebraic actions, summable homoclinic points.
Keywords: symbolic representations, generating partitions, intrinsic ergodicity
@article{FAA_2024_58_1_a4,
     author = {Hanfeng Li and Klaus Schmidt},
     title = {Intrinsic ergodicity, generators, and symbolic representations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--83},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a4/}
}
TY  - JOUR
AU  - Hanfeng Li
AU  - Klaus Schmidt
TI  - Intrinsic ergodicity, generators, and symbolic representations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 50
EP  - 83
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a4/
LA  - ru
ID  - FAA_2024_58_1_a4
ER  - 
%0 Journal Article
%A Hanfeng Li
%A Klaus Schmidt
%T Intrinsic ergodicity, generators, and symbolic representations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 50-83
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a4/
%G ru
%F FAA_2024_58_1_a4
Hanfeng Li; Klaus Schmidt. Intrinsic ergodicity, generators, and symbolic representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 50-83. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a4/