On compactification of spaces of measures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 4-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we compare the Stone–Čech compactification $\beta \mathcal{P}(X)$ of the space $\mathcal{P}(X)$ of Radon probability measures on a Tychonoff space $X$, equipped with the weak topology, with the space $\mathcal{P}(\beta X)$ of Radon probability measures on the Stone–Čech compactification $\beta X$ of the space $X$. It is shown that for any noncompact metric space $X$, the compactification $\beta \mathcal{P}(X)$ does not coincide with $\mathcal{P}(\beta X)$. We discuss the case of more general Tychonoff spaces and also the case of the Samuel compactification, for which the coincidence holds.
Keywords: Radon measure, weak topology, Stone–Čech compactification, compactification of the space of measures.
Mots-clés : Samuel compactification
@article{FAA_2024_58_1_a1,
     author = {Vladimir Bogachev},
     title = {On compactification of spaces of measures},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {4--21},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a1/}
}
TY  - JOUR
AU  - Vladimir Bogachev
TI  - On compactification of spaces of measures
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 4
EP  - 21
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a1/
LA  - ru
ID  - FAA_2024_58_1_a1
ER  - 
%0 Journal Article
%A Vladimir Bogachev
%T On compactification of spaces of measures
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 4-21
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a1/
%G ru
%F FAA_2024_58_1_a1
Vladimir Bogachev. On compactification of spaces of measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 4-21. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a1/

[1] K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612 | DOI | MR

[2] A. D. Aleksandrov, “Additive set functions in abstract spaces”, Matem. sb., 8:2 (1940), 307–348 ; 9:3 (1941), 563–628 ; 13:2–3 (1943), 169–238 | Zbl

[3] A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[4] T. Banakh, A. Chigogidze, V. Fedorchuk, “On spaces of $\sigma$-additive probability measures”, Topology Appl., 133:2 (2003), 139–155 | DOI | MR | Zbl

[5] T. O. Banakh, T. N. Radul, “Topologiya prostranstv veroyatnostnykh mer”, Matem. sb., 188:7 (1997), 23–46 | DOI | MR | Zbl

[6] V. I. Bogachev, Measure Theory, v. 2, Springer-Verlag, Berlin–New York, 2007 | MR | Zbl

[7] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl

[8] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer, Cham, 2017 | MR | Zbl

[9] V. I. Bogachev, O. G. Smolyanov, Real and Functional Analysis, Springer, Cham, 2020 | MR | Zbl

[10] R. Engelking, Obschaya topologiya, Mir, M., 1986

[11] V. V. Fedorchuk, “Veroyatnostnye mery v topologii”, UMN, 46:1 (1991), 41–80 | MR | Zbl

[12] V. V. Fedorchuk, “O topologicheskoi polnote prostranstv mer”, Izv. RAN, seriya matem., 63:4 (1999), 207–223 | DOI | MR | Zbl

[13] V. V. Fedorchuk, Y. V. Sadovnichy, “On some categorical properties of uniform spaces of probability measures”, Topology Appl., 82:1–3 (1998), 131–151 | DOI | MR | Zbl

[14] D. Fremlin, Measure Theory, v. 1–5, University of Essex, Colchester, 2000–2003 | MR

[15] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton–Toronto–London–New York, 1960 | MR | Zbl

[16] W. Grömig, “On a weakly closed subset of the space of $\tau$-smooth measures”, Proc. Amer. Math. Soc., 43 (1974), 397–401 | MR | Zbl

[17] J. R. Isbell, Uniform Spaces, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[18] G. Koumoullis, “Some topological properties of spaces of measures”, Pacif. J. Math., 96:2 (1981), 419–433 | DOI | MR | Zbl

[19] J. van Mill, “An introduction to $\beta \omega$”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 503–567 | MR

[20] S. Mrówka, “Some set-theoretic constructions in topology”, Fund. Math., 94:2 (1977), 83–92 | DOI | MR | Zbl

[21] J. Pachl, Uniform Spaces and Measures, Springer, New York; Fields Institute, Toronto, 2013 | MR | Zbl

[22] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl

[23] W. Rudin, “Homogeneity problems in the theory of Čech compactifications”, Duke Math. J., 23 (1956), 409–419 | MR | Zbl

[24] A. Szymański, “The existence of $P(\alpha)$-points of $N$* for $\aleph_0\alpha \mathfrak{c}$”, Colloq. Math., 37:2 (1977), 179–184 | MR | Zbl

[25] F. Terpe, Yu. Flaksmaier, “O nekotorykh prilozheniyakh teorii rasshirenii topologicheskikh prostranstv i teorii mery”, UMN, 32:5 (1977), 125–162 | MR | Zbl

[26] F. Topso, “Topologiya i mera”, Matematika, 16:4 (1972), 90–148 | Zbl

[27] V. S. Varadarain, “Mery na topologicheskikh prostranstvakh”, Matem. sb., 55:1 (1961), 35–100

[28] J. E. Vaughan, “Countably compact and sequentially compact spaces”, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 569–602 | DOI | MR

[29] A. M. Vershik, “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh primeneniya”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl

[30] A. M. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl

[31] R. C. Walker, The Stone–Čech Compactification, Springer-Verlag, Berlin–New York, 1974 | MR | Zbl

[32] R. F. Wheeler, “A survey of Baire measures and strict topologies”, Expos. Math., 1:2 (1983), 97–190 | MR | Zbl

[33] E. Wimmers, “The Shelah $P$-point independence theorem”, Israel J. Math., 43:1 (1982), 28–48 | DOI | MR | Zbl

[34] R. G. Woods, “The minimum uniform compactification of a metric space”, Fund. Math., 147:1 (1995), 39–59 | DOI | MR | Zbl