Homogenization of hyperbolic equations: operator estimates with correctors taken into account
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 123-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic second-order differential operator $A_\varepsilon=b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})$ on $L_2(\mathbb{R}^d)$ is considered, where $\varepsilon >0$, $g(\mathbf{x})$ is a positive definite and bounded matrix-valued function periodic with respect to some lattice, and $b(\mathbf{D})$ is a matrix first-order differential operator. Approximations for small $\varepsilon$ of the operator-functions $\cos(\tau A_\varepsilon^{1/2})$ and $A_\varepsilon^{-1/2} \sin (\tau A_\varepsilon^{1/2})$ in various operator norms are obtained. The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation $\partial^2_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = - A_\varepsilon \mathbf{u}_\varepsilon(\mathbf{x},\tau)$.
Keywords: periodic differential operators, homogenization, hyperbolic equations, operator error estimates.
@article{FAA_2023_57_4_a8,
     author = {M. A. Dorodnyi and T. A. Suslina},
     title = {Homogenization of hyperbolic equations: operator estimates with correctors taken into account},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/}
}
TY  - JOUR
AU  - M. A. Dorodnyi
AU  - T. A. Suslina
TI  - Homogenization of hyperbolic equations: operator estimates with correctors taken into account
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 123
EP  - 129
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/
LA  - ru
ID  - FAA_2023_57_4_a8
ER  - 
%0 Journal Article
%A M. A. Dorodnyi
%A T. A. Suslina
%T Homogenization of hyperbolic equations: operator estimates with correctors taken into account
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 123-129
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/
%G ru
%F FAA_2023_57_4_a8
M. A. Dorodnyi; T. A. Suslina. Homogenization of hyperbolic equations: operator estimates with correctors taken into account. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 123-129. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/

[1] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108

[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104

[3] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 18:6 (2006), 1–130

[4] T. A. Suslina, Funkts. analiz i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[5] T. A. Suslina, Amer. Math. Soc. Transl. Ser. 2, 220 (2007), 201–233, Amer. Math. Soc., Providence, RI | MR

[6] E. S. Vasilevskaya, Algebra i analiz, 21:1 (2009), 3–60 | MR

[7] T. A. Suslina, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[8] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[9] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[10] V. V. Zhikov, S. E. Pastukhova, UMN, 71:3 (2016), 27–122 | DOI | MR | Zbl

[11] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 20:6 (2008), 30–107

[12] Yu. M. Meshkova, J. Spectr. Theory, 11:2 (2021), 587–660 | DOI | MR | Zbl

[13] M. A. Dorodnyi, T. A. Suslina, J. Differential Equations, 264:12 (2018), 7463–7522 | DOI | MR | Zbl

[14] M. A. Dorodnyi, T. A. Suslina, Algebra i analiz, 32:4 (2020), 3–136 | MR

[15] T. A. Suslina, J. Math. Anal. Appl., 446:2 (2017), 1466–1523 | DOI | MR | Zbl

[16] M. A. Dorodnyi, Appl. Anal., 101:16 (2022), 5582–5614 | DOI | MR | Zbl

[17] T. A. Suslina, Funkts. analiz i ego pril., 56:3 (2022), 93–99 | DOI | Zbl

[18] T. A. Suslina, Algebra i analiz, 35:3 (2023), 138–184

[19] T. A. Suslina, UMN, 78:6 (2023)

[20] Yu. M. Meshkova, Usrednenie periodicheskikh giperbolicheskikh sistem pri uchete korrektora po $L_2(\mathbb{R}^d)$-norme, 2018 | DOI | Zbl

[21] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR