Homogenization of hyperbolic equations: operator estimates with correctors taken into account
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 123-129

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic second-order differential operator $A_\varepsilon=b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})$ on $L_2(\mathbb{R}^d)$ is considered, where $\varepsilon >0$, $g(\mathbf{x})$ is a positive definite and bounded matrix-valued function periodic with respect to some lattice, and $b(\mathbf{D})$ is a matrix first-order differential operator. Approximations for small $\varepsilon$ of the operator-functions $\cos(\tau A_\varepsilon^{1/2})$ and $A_\varepsilon^{-1/2} \sin (\tau A_\varepsilon^{1/2})$ in various operator norms are obtained. The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation $\partial^2_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = - A_\varepsilon \mathbf{u}_\varepsilon(\mathbf{x},\tau)$.
Keywords: periodic differential operators, homogenization, hyperbolic equations, operator error estimates.
@article{FAA_2023_57_4_a8,
     author = {M. A. Dorodnyi and T. A. Suslina},
     title = {Homogenization of hyperbolic equations: operator estimates with correctors taken into account},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/}
}
TY  - JOUR
AU  - M. A. Dorodnyi
AU  - T. A. Suslina
TI  - Homogenization of hyperbolic equations: operator estimates with correctors taken into account
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 123
EP  - 129
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/
LA  - ru
ID  - FAA_2023_57_4_a8
ER  - 
%0 Journal Article
%A M. A. Dorodnyi
%A T. A. Suslina
%T Homogenization of hyperbolic equations: operator estimates with correctors taken into account
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 123-129
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/
%G ru
%F FAA_2023_57_4_a8
M. A. Dorodnyi; T. A. Suslina. Homogenization of hyperbolic equations: operator estimates with correctors taken into account. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 123-129. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/