Homogenization of hyperbolic equations: operator estimates with correctors taken into account
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 123-129
Voir la notice de l'article provenant de la source Math-Net.Ru
An elliptic second-order differential
operator $A_\varepsilon=b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})$
on $L_2(\mathbb{R}^d)$ is considered, where $\varepsilon >0$,
$g(\mathbf{x})$ is a positive definite and bounded matrix-valued function periodic
with respect to some lattice, and $b(\mathbf{D})$ is a matrix first-order differential operator.
Approximations for small $\varepsilon$ of the operator-functions
$\cos(\tau A_\varepsilon^{1/2})$ and $A_\varepsilon^{-1/2} \sin (\tau A_\varepsilon^{1/2})$
in various operator norms are obtained.
The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic
equation $\partial^2_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = - A_\varepsilon \mathbf{u}_\varepsilon(\mathbf{x},\tau)$.
Keywords:
periodic differential operators, homogenization, hyperbolic equations, operator error estimates.
@article{FAA_2023_57_4_a8,
author = {M. A. Dorodnyi and T. A. Suslina},
title = {Homogenization of hyperbolic equations: operator estimates with correctors taken into account},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {123--129},
publisher = {mathdoc},
volume = {57},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/}
}
TY - JOUR AU - M. A. Dorodnyi AU - T. A. Suslina TI - Homogenization of hyperbolic equations: operator estimates with correctors taken into account JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 123 EP - 129 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/ LA - ru ID - FAA_2023_57_4_a8 ER -
%0 Journal Article %A M. A. Dorodnyi %A T. A. Suslina %T Homogenization of hyperbolic equations: operator estimates with correctors taken into account %J Funkcionalʹnyj analiz i ego priloženiâ %D 2023 %P 123-129 %V 57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/ %G ru %F FAA_2023_57_4_a8
M. A. Dorodnyi; T. A. Suslina. Homogenization of hyperbolic equations: operator estimates with correctors taken into account. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 123-129. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a8/