Full symmetric Toda system: solution via QR-decomposition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 100-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The full symmetric Toda system is a generalization of the open Toda chain, for which the Lax operator is a symmetric matrix of general form. This system is Liouville integrable and even superintegrable. Deift, Lee, Nando, and Tomei (DLNT) proposed the chopping method for constructing integrals of such a system. In the paper, a solution of Hamiltonian equations for the entire family of DLNT integrals is constructed by using the generalized QR factorization method. For this purpose, certain tensor operations on the space of Lax operators and special differential operators on the Lie algebra are introduced. Both tools can be interpreted in terms of the representation theory of the Lie algebra $\mathfrak{sl}_n$ and are expected to generalize to arbitrary real semisimple Lie algebras. As is known, the full Toda system can be interpreted in terms of a compact Lie group and a flag space. Hopefully, the results on the trajectories of this system obtained in the paper will be useful in studying the geometry of flag spaces.
Keywords: full Toda system, QR algorithm, flag space, noncommutative integrability.
@article{FAA_2023_57_4_a7,
     author = {D. V. Talalaev and Yu. B. Chernyakov and G. I. Sharygin},
     title = {Full symmetric {Toda} system: solution via {QR-decomposition}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {100--122},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/}
}
TY  - JOUR
AU  - D. V. Talalaev
AU  - Yu. B. Chernyakov
AU  - G. I. Sharygin
TI  - Full symmetric Toda system: solution via QR-decomposition
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 100
EP  - 122
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/
LA  - ru
ID  - FAA_2023_57_4_a7
ER  - 
%0 Journal Article
%A D. V. Talalaev
%A Yu. B. Chernyakov
%A G. I. Sharygin
%T Full symmetric Toda system: solution via QR-decomposition
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 100-122
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/
%G ru
%F FAA_2023_57_4_a7
D. V. Talalaev; Yu. B. Chernyakov; G. I. Sharygin. Full symmetric Toda system: solution via QR-decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 100-122. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/

[1] N. N. Nekhoroshev, “Peremennye deistvie-ugol i ikh obobschenie”, Trudy MMO, 26 (1972), 181–198 | Zbl

[2] Yu. B. Chernyakov, A. S. Sorin, “Explicit semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice”, Lett. Math. Phys., 104:8 (2014), 1045–1052 ; arXiv: 1409.5332 | DOI | MR | Zbl

[3] A. S. Sorin, Yu. B. Chernyakov, “Novyi metod postroeniya poluinvariantov i integralov polnoi simmetrichnoi $\mathfrak{s}\mathfrak{l}_n $ reshetki Tody”, TMF, 183:2 (2015), 222–253 ; arXiv: 1312.4555 | DOI | MR | Zbl

[4] P. Deift, L. C. Li, T. Nanda, C. Tomei, “The Toda flow on a generic orbit is integrable”, Commun. Pure Appl. Math., 39 (1986), 183–232 | DOI | MR | Zbl

[5] M. Gekhtman, M. Shapiro, “Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras”, Comm. Pure Appl. Math., 52:1 (1999), 53–84 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] D. V. Talalaev, “Kvantovaya obobschennaya sistema Tody”, TMF, 171:2 (2012), 312–320 | DOI | MR | Zbl

[7] M. Adler, “On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg–de Vries equation”, Invent. Math., 50:3 (1979), 219–248 | DOI | MR | Zbl

[8] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. in Math., 34:3 (1979), 195–338 | DOI | MR | Zbl

[9] W. W. Symes, “Systems of Toda type, inverse spectral problems, and representation theory”, Invent.Math., 59:1 (1980), 13–51 | DOI | MR | Zbl

[10] N. M. Ercolani, H. Flaschka, S. Singer, “The geometry of the full Kostant–Toda lattice”, Integrable systems (Luminy, 1991), Progress in Mathematics, no. 115, Birkhäuser, Boston, 1993, 181–225 | DOI | MR | Zbl

[11] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl

[12] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR

[13] G. Schrader, “Integrable systems from the classical reflection equation”, Int. Math. Res. Not., 2016:1 (2016), 1-23 | DOI | MR | Zbl

[14] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Grad. Texts in Math., 222, Springer, Cham, 2015 | DOI | MR | Zbl

[15] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, On the invariants of the full symmetric Toda system, arXiv: 1910.04789v1

[16] P. A. Damianou, F. Magri, “A gentle (without chopping) approach to the full Kostant–Toda lattice”, SIGMA, 1 (2005), 010 | MR | Zbl

[17] I. Bobrova, V. Retakh, V. Rubtsov, G. Sharygin, “A fully noncommutative analog of the Painlevè IV equation and a structure of its solutions”, J. Phys. A, 55:47 (2022), 475205 | DOI | MR | Zbl

[18] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in general Toda system”, Comm. Math. Phys., 330:1 (2014), 367–399 | DOI | MR | Zbl

[19] Y. Xie, On the full Kostant–Toda lattice and the flag varieties. I. The singular solutions, arXiv: 2212.03679 | MR

[20] Y. Kodama, Y. Xie, On the full Kostant-Toda hierarchy and its $\ell$-banded reductions for the Lie algebras of type A, B and G, arXiv: 2303.07331