Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_4_a7, author = {D. V. Talalaev and Yu. B. Chernyakov and G. I. Sharygin}, title = {Full symmetric {Toda} system: solution via {QR-decomposition}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {100--122}, publisher = {mathdoc}, volume = {57}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/} }
TY - JOUR AU - D. V. Talalaev AU - Yu. B. Chernyakov AU - G. I. Sharygin TI - Full symmetric Toda system: solution via QR-decomposition JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 100 EP - 122 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/ LA - ru ID - FAA_2023_57_4_a7 ER -
D. V. Talalaev; Yu. B. Chernyakov; G. I. Sharygin. Full symmetric Toda system: solution via QR-decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 100-122. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a7/
[1] N. N. Nekhoroshev, “Peremennye deistvie-ugol i ikh obobschenie”, Trudy MMO, 26 (1972), 181–198 | Zbl
[2] Yu. B. Chernyakov, A. S. Sorin, “Explicit semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice”, Lett. Math. Phys., 104:8 (2014), 1045–1052 ; arXiv: 1409.5332 | DOI | MR | Zbl
[3] A. S. Sorin, Yu. B. Chernyakov, “Novyi metod postroeniya poluinvariantov i integralov polnoi simmetrichnoi $\mathfrak{s}\mathfrak{l}_n $ reshetki Tody”, TMF, 183:2 (2015), 222–253 ; arXiv: 1312.4555 | DOI | MR | Zbl
[4] P. Deift, L. C. Li, T. Nanda, C. Tomei, “The Toda flow on a generic orbit is integrable”, Commun. Pure Appl. Math., 39 (1986), 183–232 | DOI | MR | Zbl
[5] M. Gekhtman, M. Shapiro, “Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras”, Comm. Pure Appl. Math., 52:1 (1999), 53–84 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[6] D. V. Talalaev, “Kvantovaya obobschennaya sistema Tody”, TMF, 171:2 (2012), 312–320 | DOI | MR | Zbl
[7] M. Adler, “On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg–de Vries equation”, Invent. Math., 50:3 (1979), 219–248 | DOI | MR | Zbl
[8] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. in Math., 34:3 (1979), 195–338 | DOI | MR | Zbl
[9] W. W. Symes, “Systems of Toda type, inverse spectral problems, and representation theory”, Invent.Math., 59:1 (1980), 13–51 | DOI | MR | Zbl
[10] N. M. Ercolani, H. Flaschka, S. Singer, “The geometry of the full Kostant–Toda lattice”, Integrable systems (Luminy, 1991), Progress in Mathematics, no. 115, Birkhäuser, Boston, 1993, 181–225 | DOI | MR | Zbl
[11] S. V. Manakov, “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl
[12] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR
[13] G. Schrader, “Integrable systems from the classical reflection equation”, Int. Math. Res. Not., 2016:1 (2016), 1-23 | DOI | MR | Zbl
[14] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Grad. Texts in Math., 222, Springer, Cham, 2015 | DOI | MR | Zbl
[15] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, On the invariants of the full symmetric Toda system, arXiv: 1910.04789v1
[16] P. A. Damianou, F. Magri, “A gentle (without chopping) approach to the full Kostant–Toda lattice”, SIGMA, 1 (2005), 010 | MR | Zbl
[17] I. Bobrova, V. Retakh, V. Rubtsov, G. Sharygin, “A fully noncommutative analog of the Painlevè IV equation and a structure of its solutions”, J. Phys. A, 55:47 (2022), 475205 | DOI | MR | Zbl
[18] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in general Toda system”, Comm. Math. Phys., 330:1 (2014), 367–399 | DOI | MR | Zbl
[19] Y. Xie, On the full Kostant–Toda lattice and the flag varieties. I. The singular solutions, arXiv: 2212.03679 | MR
[20] Y. Kodama, Y. Xie, On the full Kostant-Toda hierarchy and its $\ell$-banded reductions for the Lie algebras of type A, B and G, arXiv: 2303.07331