Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_4_a3, author = {A. M. Vershik}, title = {Classification of measurable functions of several variables and matrix distributions}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {46--59}, publisher = {mathdoc}, volume = {57}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/} }
TY - JOUR AU - A. M. Vershik TI - Classification of measurable functions of several variables and matrix distributions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 46 EP - 59 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/ LA - ru ID - FAA_2023_57_4_a3 ER -
A. M. Vershik. Classification of measurable functions of several variables and matrix distributions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 46-59. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/
[1] A. M. Vershik, G. A. Veprev, P. B. Zatitskii, “Dinamika metrik v prostranstvakh s meroi i masshtabirovannaya entropiya”, UMN, 78:3(471) (2023), 53–114 | DOI
[2] D. Aldous, “Representations of partially exchangeable arrays of random variables”, J. Multiplivariate Anal., 11:4 (1981), 581–598 | DOI | MR | Zbl
[3] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser Boston, Boston, MA, 1999 | MR | Zbl
[4] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnost”, UMN, 59:2(356) (2004), 65–104 | DOI | MR
[5] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–27 | DOI | MR | Zbl
[6] A. M. Vershik, U. Haboek, “On the classificstion problem jf measurable functions in several variables and on matrix distributions”, Zap. nauchn. sem. POMI, 441, 2015, 119–141 | MR
[7] A. Vershik, U. Haboek, “Compactness of the congruence group of measurable functions in several variables”, Zap. nauchn. sem. POMI, 334, 2006, 57–67 | MR | Zbl
[8] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl
[9] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, UMN, 12:2(74) (1957), 169–174 | MR | Zbl
[10] V. Bogachev, Osnovy teorii mery, v. 1, 2-e izd., NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2006
[11] B. Weiss, Single Orbit Dynamics, CBMS Reg. Conf. Ser. Math., no. 95, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[12] D. Aldous, “Exchangeability and related topics”, Lecture Notes in Math., 1117, Springer-Verlag, Berlin–Heidelberg, 1985, 1–198 | DOI | MR
[13] O. Kallenberg, “On the representation theorem for exchangeable arrays”, J. Multiplivatiate Anal., 30:1 (1989), 137–154 | DOI | MR | Zbl
[14] A. M. Vershik, “Opisanie invariantnykh mer dlya deistviya nekotorykh beskonechnomernykh grupp”, DAN SSSR, 218:4 (1974), 749–752 | Zbl
[15] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[16] A. M. Vershik, M. A. Lifshits, “$mm$-entropiya banakhova prostranstva s gaussovskoi meroi”, Teoriya veroyatn. i ee primen., 68:3 (2023), 532–543 | DOI
[17] K. Shennon, “Matematicheskaya teoriya svyazi”, Raboty po teorii informatsii i kibernetike, IL, M., 1963, 243–332
[18] S. Gadgil, M. Krishnapur, “Lipschitz correspondence between metric measure spaces and random distance matrices”, Int. Math. Res. Not., 24 (2013), 5623–5624 | DOI | MR
[19] E. Bogomolny, O. Bohigas, C. Schmit, “Spectral properties of distance matrices”, J. Phys. A, 36:12 (2003), 3595–3616 | DOI | MR | Zbl
[20] V. Koltchinskii, E. Gine, “Random matrix approximation of spectra of integral operators”, Bernoulli, 6:1 (2000), 113–167 | DOI | MR | Zbl
[21] A. M. Vershik, F. V. Petrov, “Predelnye spektralnye mery matrichnykh raspredelenii metricheskikh troek”, Funkts. analiz i ego pril., 57:2 (2023), 106–110 | DOI