Classification of measurable functions of several variables and matrix distributions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the notion of the matrix (tensor) distribution of a measurable function of several variables. On the one hand, this is an invariant of this function with respect to a certain group of transformations of variables; on the other hand, this is a special probability measure in the space of matrices (tensors) that is invariant under actions of natural infinite permutation groups. The intricate interplay of both interpretations of matrix (tensor) distributions makes them an important subject of modern functional analysis. We formulate and prove a theorem that, under certain conditions on a measurable function of two variables, its matrix distribution is a complete invariant.
Keywords: classification of functions, metric triples, pointwise ergodic theorem.
Mots-clés : matrix distribution
@article{FAA_2023_57_4_a3,
     author = {A. M. Vershik},
     title = {Classification of measurable functions of several variables and matrix distributions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Classification of measurable functions of several variables and matrix distributions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 46
EP  - 59
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/
LA  - ru
ID  - FAA_2023_57_4_a3
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Classification of measurable functions of several variables and matrix distributions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 46-59
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/
%G ru
%F FAA_2023_57_4_a3
A. M. Vershik. Classification of measurable functions of several variables and matrix distributions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 46-59. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a3/

[1] A. M. Vershik, G. A. Veprev, P. B. Zatitskii, “Dinamika metrik v prostranstvakh s meroi i masshtabirovannaya entropiya”, UMN, 78:3(471) (2023), 53–114 | DOI

[2] D. Aldous, “Representations of partially exchangeable arrays of random variables”, J. Multiplivariate Anal., 11:4 (1981), 581–598 | DOI | MR | Zbl

[3] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser Boston, Boston, MA, 1999 | MR | Zbl

[4] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnost”, UMN, 59:2(356) (2004), 65–104 | DOI | MR

[5] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–27 | DOI | MR | Zbl

[6] A. M. Vershik, U. Haboek, “On the classificstion problem jf measurable functions in several variables and on matrix distributions”, Zap. nauchn. sem. POMI, 441, 2015, 119–141 | MR

[7] A. Vershik, U. Haboek, “Compactness of the congruence group of measurable functions in several variables”, Zap. nauchn. sem. POMI, 334, 2006, 57–67 | MR | Zbl

[8] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl

[9] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, UMN, 12:2(74) (1957), 169–174 | MR | Zbl

[10] V. Bogachev, Osnovy teorii mery, v. 1, 2-e izd., NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2006

[11] B. Weiss, Single Orbit Dynamics, CBMS Reg. Conf. Ser. Math., no. 95, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[12] D. Aldous, “Exchangeability and related topics”, Lecture Notes in Math., 1117, Springer-Verlag, Berlin–Heidelberg, 1985, 1–198 | DOI | MR

[13] O. Kallenberg, “On the representation theorem for exchangeable arrays”, J. Multiplivatiate Anal., 30:1 (1989), 137–154 | DOI | MR | Zbl

[14] A. M. Vershik, “Opisanie invariantnykh mer dlya deistviya nekotorykh beskonechnomernykh grupp”, DAN SSSR, 218:4 (1974), 749–752 | Zbl

[15] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl

[16] A. M. Vershik, M. A. Lifshits, “$mm$-entropiya banakhova prostranstva s gaussovskoi meroi”, Teoriya veroyatn. i ee primen., 68:3 (2023), 532–543 | DOI

[17] K. Shennon, “Matematicheskaya teoriya svyazi”, Raboty po teorii informatsii i kibernetike, IL, M., 1963, 243–332

[18] S. Gadgil, M. Krishnapur, “Lipschitz correspondence between metric measure spaces and random distance matrices”, Int. Math. Res. Not., 24 (2013), 5623–5624 | DOI | MR

[19] E. Bogomolny, O. Bohigas, C. Schmit, “Spectral properties of distance matrices”, J. Phys. A, 36:12 (2003), 3595–3616 | DOI | MR | Zbl

[20] V. Koltchinskii, E. Gine, “Random matrix approximation of spectra of integral operators”, Bernoulli, 6:1 (2000), 113–167 | DOI | MR | Zbl

[21] A. M. Vershik, F. V. Petrov, “Predelnye spektralnye mery matrichnykh raspredelenii metricheskikh troek”, Funkts. analiz i ego pril., 57:2 (2023), 106–110 | DOI