The Mumford dynamical system and hyperelliptic Kleinian functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 27-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a differential-algebraic theory of the Mumford dynamical system. In the framework of this theory, we introduce the $(P,Q)$-recursion, which defines a sequence of functions $P_1,P_2,\ldots$ given the first function $P_1$ of this sequence and a sequence of parameters $h_1,h_2,\dots$ . The general solution of the $(P,Q)$-recursion is shown to give a solution for the parametric graded Korteweg–de Vries hierarchy. We prove that all solutions of the Mumford dynamical $g$-system are determined by the $(P,Q)$-recursion under the condition $P_{g+1} = 0$, which is equivalent to an ordinary nonlinear differential equation of order $2g$ for the function $P_1$. Reduction of the $g$-system of Mumford to the Buchstaber–Enolskii–Leykin dynamical system is described explicitly, and its explicit $2g$-parameter solution in hyperelliptic Klein functions is presented.
Keywords: Korteweg–de Vries equation, parametric KdV hierarchy, family of Poisson brackets, Gelfand–Dikii recursion, hyperelliptic Kleinian functions.
@article{FAA_2023_57_4_a2,
     author = {V. M. Buchstaber},
     title = {The {Mumford} dynamical system and hyperelliptic {Kleinian} functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {27--45},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - The Mumford dynamical system and hyperelliptic Kleinian functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 27
EP  - 45
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a2/
LA  - ru
ID  - FAA_2023_57_4_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T The Mumford dynamical system and hyperelliptic Kleinian functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 27-45
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a2/
%G ru
%F FAA_2023_57_4_a2
V. M. Buchstaber. The Mumford dynamical system and hyperelliptic Kleinian functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 27-45. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a2/

[1] M. Adler, P. van Moerbeke, “Birkhoff strata, Bäcklund transformations and regularization of isospectral operators”, Adv. Math., 108:1 (1994), 140–204 | DOI | MR | Zbl

[2] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR

[3] P. G. Baron, “Dinamicheskaya sistema Mamforda i rekursiya Gelfanda–Dikogo”, Funkts. analiz i ego pril., 57:4 (2023), 17–26

[4] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews in Mathematics and Mathematical Physics, v. 10, 2, Gordon and Breach, London, 1997, 3–120 | MR

[5] V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, no. 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 41–66 | MR | Zbl

[6] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl

[7] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “$\sigma$-functions: old and new results”, Integrable Systems and Algebraic Geometry, v. 2, LMS Lecture Note Series, 459, Cambridge Univ. Press, Cambridge, 2020, 175–214 | MR | Zbl

[8] E. Yu. Bunkova, V. M. Bukhshtaber, “Sigma-funktsii i algebry Li operatorov Shredingera”, Funkts. analiz i ego pril., 54:4 (2020), 3–16 | DOI | MR | Zbl

[9] V. M. Bukhshtaber, A. V. Mikhailov, “Integriruemye polinomialnye gamiltonovy sistemy i simmetricheskie stepeni ploskikh algebraicheskikh krivykh”, UMN, 76:4(460) (2021), 37–104 | DOI | MR | Zbl

[10] E. Yu. Bunkova, V. M. Bukhshtaber, “Parametricheskaya ierarkhiya Kortevega–de Friza i giperellipticheskie sigma-funktsii”, Funkts. analiz i ego pril., 56:3 (2022), 16–38 | DOI | MR | Zbl

[11] V. M. Bukhshtaber, E. Yu. Bunkova, “Yavnye formuly differentsirovaniya giperellipticheskikh funktsii”, Matem. zametki, 115:6 (2023) (to appear)

[12] L. A. Dikey, Soliton Equations and Hamiltonian Systems, Adv. Ser. Math. Phys., 26, World Scientific, River Edge, 2003 | DOI | MR

[13] B. A. Dubpovin, S. P. Hovikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:12 (1974), 2131–2144

[14] B. A. Dubpovin, S. P. Hovikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, DAH SSSR, 219:3 (1974), 531–534

[15] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2(218) (1981), 11–80 | MR | Zbl

[16] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy-4, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–277 | MR

[17] Y. Fittouhi, Stratifications of the Singular Fibers of Mumford Systems, arXiv: 1902.07994

[18] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[19] I. M. Gelfand, L. A. Dikii, “Asimptotika rezolventy shturm-liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | MR | Zbl

[20] I. M. Gelfand, L. A. Dikii, “Struktura algebry Li v formalnom variatsionnom ischislenii”, Funkts. analiz i ego pril., 10:1 (1976), 18–25 | MR | Zbl

[21] I. M. Gelfand, L. A. Dikii, “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | MR | Zbl

[22] I. M. Gelfand, L. A. Dikii, “Rezolventa i gamiltonovy sistemy”, Funkts. analiz i ego pril., 11:2 (1977), 11–27 | MR | Zbl

[23] I. M. Gelfand, L. A. Dikii, “Ischislenie strui i nelineinye gamiltonovy sistemy”, Funkts. analiz i ego pril., 12:2 (1978), 8–23 | MR | Zbl

[24] I. M. Gelfand, L. A. Dikii, “Integriruemye nelineinye uravneniya i teorema Liuvillya”, Funkts. analiz i ego pril., 13:1 (1979)), 8–20 | MR | Zbl

[25] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980

[26] D. J. Korteweg, G. de Vries, “On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves”, Philos. Mag. (5), 39:240 (1895), 422–443 | DOI | MR

[27] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | MR | Zbl

[28] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[29] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[30] S. P. Novikov, “Periodichekaya zadacha dlya uravneniya Kortevega–de Friza, I.”, Funkts. anal. i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[31] F. Trikomi, Differentsialnye uravneniya, IL, M., 1961

[32] A. V. Tsyganov, Integriruemye sistemy v metode razdeleniya peremennykh, Sovremennaya matematika, R dinamika, Moskva, Izhevsk, 2005

[33] P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, 2nd ed., Springer Science Business Media, Berlin, 2001 | MR | Zbl