The mumford dynamical system and the Gelfand–Dikii recursion
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 17-26
Cet article a éte moissonné depuis la source Math-Net.Ru
In his paper “The Mumford dynamical system and hyperelliptic Kleinian functions” [Funkts. Anal. Prilozhen. 57 (4), 27–45 (2023)] Victor Buchstaber developed the differential-algebraic theory of the Mumford dynamical system. The key object of this theory is the $(P,Q)$-recursion introduced in his paper. In the present paper, we further develop the theory of the $(P,Q)$-recursion and describe its connections to the Korteweg–de Vries hierarchy, the Lenard operator, and the Gelfand–Dikii recursion.
Keywords:
Korteweg–de Vries (KdV) equation, parametric KdV hierarchy, Gelfand–Dikii hierarchy, Lenard operator, polynomial dynamical systems, polynomial integrals, differential polynomials.
@article{FAA_2023_57_4_a1,
author = {P. G. Baron},
title = {The mumford dynamical system and the {Gelfand{\textendash}Dikii} recursion},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {17--26},
year = {2023},
volume = {57},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a1/}
}
P. G. Baron. The mumford dynamical system and the Gelfand–Dikii recursion. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 17-26. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a1/
[1] V. M. Bukhshtaber, “Dinamicheskaya sistema Mamforda i giperellipticheskie funktsii Kleina”, Funkts. analiz i ego pril., 57:4 (2023), 27–45
[2] I. M. Gelfand, L. A. Dikii, “Asimptotika rezolventy Shturm–Liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5 (1975), 67–100 | MR | Zbl
[3] I. M. Gelfand, L. A. Dikii, “Integriruemye nelineinye uravneniya i teorema Liuvillya”, Funkts. analiz i ego pril., 13:1 (1979), 8–20 | MR | Zbl
[4] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[5] Nelineinye volny, eds. S. Leibovich, A. Sibass, Mir, M., 1977