Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_4_a0, author = {K. A. Afonin}, title = {The nonlinear {Kantorovich} transportation problem with nonconvex costs}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--16}, publisher = {mathdoc}, volume = {57}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a0/} }
K. A. Afonin. The nonlinear Kantorovich transportation problem with nonconvex costs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a0/
[1] B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR
[2] J.-J. Alibert, G. Bouchitté, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR | Zbl
[3] L. Ambrosio, E. Brué, D. Semola, Lectures on Optimal Transport, Unitext, 130, Springer, Cham, 2021 | DOI | MR | Zbl
[4] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013, 1–155 | DOI | MR
[5] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity forweak transport costs.”, Calc. Var. Partial Differ. Equ., 58:6 (2019), 203 | DOI | MR | Zbl
[6] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl
[7] V. I. Bogachev, Measure Theory, v. I, II, Springer-Verlag, Berlin, 2007 | MR | Zbl
[8] V. I. Bogachev, Weak Convergence of Measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018 | DOI | MR | Zbl
[9] V. I. Bogachev, “Zadacha Kantorovicha optimalnoi transportirovki mer: novye napravleniya issledovanii”, UMN, 77:5(467) (2022), 3–52 | DOI | MR
[10] V. I. Bogachev, A. N. Kalinin, S. N. Popova, “O ravenstve znachenii v zadachakh Monzha i Kantorovicha”, Veroyatnost i statistika. 25, Posvyaschaetsya pamyati Vladimira Nikolaevicha Sudakova, Zap. nauchn. sem. POMI, 457, POMI, SPb., 2017, 53–73
[11] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl
[12] V. I. Bogachev, A. V. Rezbaev, “Suschestvovanie reshenii nelineinoi zadachi Kantorovicha optimalnoi transportirovki”, Matem. zametki, 112:3 (2022), 360–370 | DOI | MR | Zbl
[13] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer Monogr. Math., Springer, Cham, 2017 | DOI | MR | Zbl
[14] A. Figalli, F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows, EMS Textbk. Math., EMS Press, Berlin, 2021 | MR | Zbl
[15] N. Gozlan, C. Roberto, P.-M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl
[16] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of Variations, PDEs, and Modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015 | MR | Zbl
[17] C. Villani, Optimal Transport, Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl