The nonlinear Kantorovich transportation problem with nonconvex costs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the Kantorovich optimal transportation problem with nonlinear cost functional generated by a cost function depending on the conditional measures of the transport plan. The case of a cost function nonconvex in the second argument is considered. It is proved that this nonlinear Kantorovich problem with general cost function on a Souslin space can be reduced to the same problem with a convex cost function.
Keywords: Kantorovich problem, conditional measure, nonlinear cost functional, cost function.
@article{FAA_2023_57_4_a0,
     author = {K. A. Afonin},
     title = {The nonlinear {Kantorovich} transportation problem with nonconvex costs},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a0/}
}
TY  - JOUR
AU  - K. A. Afonin
TI  - The nonlinear Kantorovich transportation problem with nonconvex costs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 16
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a0/
LA  - ru
ID  - FAA_2023_57_4_a0
ER  - 
%0 Journal Article
%A K. A. Afonin
%T The nonlinear Kantorovich transportation problem with nonconvex costs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-16
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a0/
%G ru
%F FAA_2023_57_4_a0
K. A. Afonin. The nonlinear Kantorovich transportation problem with nonconvex costs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a0/

[1] B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR

[2] J.-J. Alibert, G. Bouchitté, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR | Zbl

[3] L. Ambrosio, E. Brué, D. Semola, Lectures on Optimal Transport, Unitext, 130, Springer, Cham, 2021 | DOI | MR | Zbl

[4] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013, 1–155 | DOI | MR

[5] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity forweak transport costs.”, Calc. Var. Partial Differ. Equ., 58:6 (2019), 203 | DOI | MR | Zbl

[6] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl

[7] V. I. Bogachev, Measure Theory, v. I, II, Springer-Verlag, Berlin, 2007 | MR | Zbl

[8] V. I. Bogachev, Weak Convergence of Measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018 | DOI | MR | Zbl

[9] V. I. Bogachev, “Zadacha Kantorovicha optimalnoi transportirovki mer: novye napravleniya issledovanii”, UMN, 77:5(467) (2022), 3–52 | DOI | MR

[10] V. I. Bogachev, A. N. Kalinin, S. N. Popova, “O ravenstve znachenii v zadachakh Monzha i Kantorovicha”, Veroyatnost i statistika. 25, Posvyaschaetsya pamyati Vladimira Nikolaevicha Sudakova, Zap. nauchn. sem. POMI, 457, POMI, SPb., 2017, 53–73

[11] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl

[12] V. I. Bogachev, A. V. Rezbaev, “Suschestvovanie reshenii nelineinoi zadachi Kantorovicha optimalnoi transportirovki”, Matem. zametki, 112:3 (2022), 360–370 | DOI | MR | Zbl

[13] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer Monogr. Math., Springer, Cham, 2017 | DOI | MR | Zbl

[14] A. Figalli, F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows, EMS Textbk. Math., EMS Press, Berlin, 2021 | MR | Zbl

[15] N. Gozlan, C. Roberto, P.-M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl

[16] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of Variations, PDEs, and Modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015 | MR | Zbl

[17] C. Villani, Optimal Transport, Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl