Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_3_a4, author = {L. Han and Y. Li and D. Sauzin and Sh. Sun}, title = {Resurgence and partial theta series}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {89--112}, publisher = {mathdoc}, volume = {57}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/} }
L. Han; Y. Li; D. Sauzin; Sh. Sun. Resurgence and partial theta series. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 89-112. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/
[1] J. E. Andersen, W. E. Misteg{å}rd, “Resurgence analysis of quantum invariants of Seifert fibered homology spheres”, J. Lond. Math. Soc., II Ser., 105:2 (2022), 709–764 | DOI | MR
[2] K. Bringmann, J. Kaszian, A. Milas, “Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak{sl}_3$ false theta functions”, Res. Math. Sci., 6:2 (2019), 20 | DOI | MR | Zbl
[3] O. Costin, S. Garoufalidis, “Resurgence of the Kontsevich–Zagier series”, Ann. Inst. Fourier (Grenoble), 61:3 (2011), 1225–1258 | DOI | MR | Zbl
[4] A. Dudko, D. Sauzin, “On the resurgent approach to Écalle–Voronin's invariants”, C. R. Math. Acad. Sci. Paris, 353:3 (2015), 265–271 | DOI | MR | Zbl
[5] A. Dudko, D. Sauzin, “The resurgent character of the Fatou coordinates of a simple parabolic germ”, C. R. Math. Acad. Sci. Paris, 352:3 (2014), 255–261 | DOI | MR
[6] J. Écalle, Les fonctions résurgentes, v. I, II, Publications Mathématiques d'Orsay, no. 56, Université de Paris-Sud, Orsay, 1981 | MR
[7] J. Écalle, “Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture”, Bifurcations and periodic orbits of vector fields (Montreal, PQ, 1992), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., no. 408, Kluwer Acad. Publ., Dordrecht, 1993, 75–184 | MR
[8] L. Han, Y. Li, D. Sauzin, S. Sun, “Resurgence and modularity of partial theta series”, in preparation
[9] P. Flajolet, M. Noy, “Analytic combinatorics of chord diagrams”, Formal power series and algebraic combinatorics (Moscow, 2000), Springer, Berlin, 2000, 191–201 | DOI | MR | Zbl
[10] A. Goswami, R. Osburn, “Quantum modularity of partial theta series with periodic coefficients”, Forum Math., 33:2 (2021), 451–463 | DOI | MR | Zbl
[11] S. Gukov, C. Manolescu, “A two-variable series for knot complements”, Quantum Topol., 12:1 (2021), 1–109 | DOI | MR | Zbl
[12] S. Gukov, M. Mariño, P. Putrov, Resurgence in complex Chern–Simons theory, arXiv: 1605.07615
[13] Nonlinear Stokes Phenomena, Adv. Sov. Math., no. 14, Amer. Math. Soc., Providence, RI, 1993
[14] M. Kontsevich, Y. Soibelman, “Analyticity and resurgence in wall-crossing formulas”, Lett. Math. Phys., 112:2 (2022), 56 | DOI | MR | Zbl
[15] R. Lawrence, D. Zagier, “Modular forms and quantum invariants of $3$-manifolds”, Asian J. Math., 3:1 (1999), 93–107 | DOI | MR | Zbl
[16] The LMFDB Collaboration, The L-functions and modular forms database, , 2022 http://www.lmfdb.org
[17] F. Menous, “Les bonnes moyennes uniformisantes at une application à la resommation réelle”, Ann. Fac. Sci. Toulouse, Math. (6), 8:4 (1999), 579–628 | DOI | MR | Zbl
[18] C. Mitschi, D. Sauzin, Divergent Series, Summability and Resurgence. {I}, Lect. Notes Math., no. 2153, Springer, Cham, 2016 | DOI | MR | Zbl
[19] D. Sauzin, “Mould expansions for the saddle-node and resurgence monomials”, Renormalization and Galois theories. Selected papers of the CIRM workshop (Luminy, France, March 2006), European Mathematical Society, Zürich, 2009, 83–163 | DOI | MR | Zbl
[20] D. Sauzin, “Nonlinear analysis with resurgent functions”, Ann. Sci. Éc. Norm. Supér. (4), 48:3 (2015), 667–702 | DOI | MR | Zbl
[21] G. Shimura, “On modular forms of half integral weight”, Ann. of Math. (2), 97 (1973), 440–481 | DOI | MR | Zbl
[22] D. Zagier, “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 659–675 | MR | Zbl
[23] D. Zagier, “The dilogarithm function”, Frontiers in number theory, physics, and geometry. II, Springer-Verlag, Berlin, 2007, 3–65 | MR | Zbl
[24] D. Zagier, “Vassiliev invariants and a strange identity related to the Dedekind eta-function”, Topology, 40:5 (2001), 945–960 | DOI | MR | Zbl