Resurgence and partial theta series
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 89-112

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider partial theta series associated with periodic sequences of coefficients, namely, $\Theta(\tau):= \sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}$, where $\nu\in\mathbb{Z}_{\ge0}$ and $f\colon\mathbb{Z} \to \mathbb{C}$ is an $M$-periodic function. Such a function $\Theta$ is analytic in the half-plane $\{\operatorname{Im}\tau>0\}$ and in the asymptotics of $\Theta(\tau)$ as $\tau$ tends nontangentially to any $\alpha\in\mathbb{Q}$ a formal power series appears, which depends on the parity of $\nu$ and $f$. We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of $\Theta$, or its “quantum modularity” properties in the sense of Zagier's recent theory. The discrete Fourier transform of $f$ plays an unexpected role and leads to a number-theoretic analogue of Écalle's “bridge equations.” The main thesis is: (quantum) modularity $=$ Stokes phenomenon $+$ discrete Fourier transform.
Keywords: resurgence, modularity, partial theta series, topological quantum field theory.
@article{FAA_2023_57_3_a4,
     author = {L. Han and Y. Li and D. Sauzin and Sh. Sun},
     title = {Resurgence and partial theta series},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {89--112},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/}
}
TY  - JOUR
AU  - L. Han
AU  - Y. Li
AU  - D. Sauzin
AU  - Sh. Sun
TI  - Resurgence and partial theta series
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 89
EP  - 112
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/
LA  - ru
ID  - FAA_2023_57_3_a4
ER  - 
%0 Journal Article
%A L. Han
%A Y. Li
%A D. Sauzin
%A Sh. Sun
%T Resurgence and partial theta series
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 89-112
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/
%G ru
%F FAA_2023_57_3_a4
L. Han; Y. Li; D. Sauzin; Sh. Sun. Resurgence and partial theta series. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 89-112. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/