Resurgence and partial theta series
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 89-112
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider partial theta series associated with periodic sequences of coefficients,
namely,
$\Theta(\tau):= \sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}$, where $\nu\in\mathbb{Z}_{\ge0}$
and $f\colon\mathbb{Z} \to \mathbb{C}$ is an $M$-periodic function. Such a function $\Theta$
is analytic in the half-plane $\{\operatorname{Im}\tau>0\}$ and in the asymptotics of $\Theta(\tau)$
as $\tau$ tends nontangentially to any $\alpha\in\mathbb{Q}$ a formal power series appears, which depends
on the parity of $\nu$ and $f$. We discuss the summability and resurgence
properties of these series; namely, we present explicit formulas for their formal
Borel transforms and their consequences
for the modularity properties of $\Theta$, or its “quantum modularity” properties in the sense of Zagier's
recent theory. The discrete Fourier transform of $f$ plays an unexpected role
and leads to a number-theoretic
analogue of Écalle's “bridge equations.” The
main thesis is: (quantum) modularity $=$ Stokes phenomenon $+$
discrete Fourier transform.
Keywords:
resurgence, modularity, partial theta series, topological quantum field theory.
@article{FAA_2023_57_3_a4,
author = {L. Han and Y. Li and D. Sauzin and Sh. Sun},
title = {Resurgence and partial theta series},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {89--112},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/}
}
L. Han; Y. Li; D. Sauzin; Sh. Sun. Resurgence and partial theta series. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 89-112. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a4/