Self-joinings and generic extensions of ergodic systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 74-88
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the generic extensions of a dynamical system inherit the triviality of pairwise independent
self-joinings. This property is related to well-known problems of joining theory and to Rokhlin's famous
multiple mixing problem.
Keywords:
pairwise independent joinings, local rigidity of cocycles, generic extensions of actions, relative multiple
mixing.
@article{FAA_2023_57_3_a3,
author = {V. V. Ryzhikov},
title = {Self-joinings and generic extensions of ergodic systems},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {74--88},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a3/}
}
V. V. Ryzhikov. Self-joinings and generic extensions of ergodic systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 74-88. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a3/