Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 39-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of describing the triples $(\Omega,g,\mu)$, $\mu=\rho\,dx$, where $g= (g^{ij}(x))$ is the (co)metric associated with a symmetric second-order differential operator $\mathbf{L}(f) = \frac{1}{\rho}\sum_{ij} \partial_i (g^{ij} \rho\,\partial_j f)$ defined on a domain $\Omega$ of $\mathbb{R}^d$ and such that there exists an orthonormal basis of $\mathcal{L}^2(\mu)$ consisting of polynomials which are eigenvectors of $\mathbf{L}$ and this basis is compatible with the filtration of the space of polynomials by some weighted degree. In a joint paper of D. Bakry, M. Zani, and the author this problem was solved in dimension 2 for the usual degree. In the present paper we solve it still in dimension 2 but for a weighted degree with arbitrary positive weights.
Mots-clés : orthogonal polynomials
Keywords: diffusion operator.
@article{FAA_2023_57_3_a2,
     author = {S. Yu. Orevkov},
     title = {Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--73},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 39
EP  - 73
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/
LA  - ru
ID  - FAA_2023_57_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 39-73
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/
%G ru
%F FAA_2023_57_3_a2
S. Yu. Orevkov. Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 39-73. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/

[1] D. Bakry, X. Bressaud, “Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$”, Ann. Fac. Sci. Toulouse Math. (6), 25:2–3 (2016), 683–721 | DOI | MR | Zbl

[2] D. Bakry, O. Zribi, “Curvature dimension bounds on the deltoid model”, Ann. Fac. Sci. Toulouse Math. (6), 25:1 (2016), 65–90 | DOI | MR | Zbl

[3] D. Bakry, S. Orevkov, M. Zani, “Orthogonal polynomials and diffusion operators”, Ann. Fac. Sci. Toulouse Math. (6), 30:5 (2021), 985–1073 | DOI | MR

[4] V. S. Kulikov, “A remark on classical Pluecker's formulae”, Ann. Fac. Sci. Toulouse Math. (6), 25:5 (2016), 959–967 | DOI | MR | Zbl

[5] L. Soukhanov, On the phenomena of constant curvature in the diffusion-orthogonal polynomials, arXiv: 1409.5332

[6] L. Soukhanov, “Diffusion-orthogonal polynomial systems of maximal weighted degree”, Ann. Fac. Sci. Toulouse Math. (6), 26:2 (2017), 511–518 | DOI | MR | Zbl