Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_3_a2, author = {S. Yu. Orevkov}, title = {Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {39--73}, publisher = {mathdoc}, volume = {57}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/} }
TY - JOUR AU - S. Yu. Orevkov TI - Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 39 EP - 73 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/ LA - ru ID - FAA_2023_57_3_a2 ER -
S. Yu. Orevkov. Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 39-73. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/
[1] D. Bakry, X. Bressaud, “Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$”, Ann. Fac. Sci. Toulouse Math. (6), 25:2–3 (2016), 683–721 | DOI | MR | Zbl
[2] D. Bakry, O. Zribi, “Curvature dimension bounds on the deltoid model”, Ann. Fac. Sci. Toulouse Math. (6), 25:1 (2016), 65–90 | DOI | MR | Zbl
[3] D. Bakry, S. Orevkov, M. Zani, “Orthogonal polynomials and diffusion operators”, Ann. Fac. Sci. Toulouse Math. (6), 30:5 (2021), 985–1073 | DOI | MR
[4] V. S. Kulikov, “A remark on classical Pluecker's formulae”, Ann. Fac. Sci. Toulouse Math. (6), 25:5 (2016), 959–967 | DOI | MR | Zbl
[5] L. Soukhanov, On the phenomena of constant curvature in the diffusion-orthogonal polynomials, arXiv: 1409.5332
[6] L. Soukhanov, “Diffusion-orthogonal polynomial systems of maximal weighted degree”, Ann. Fac. Sci. Toulouse Math. (6), 26:2 (2017), 511–518 | DOI | MR | Zbl