Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 39-73
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of describing the triples $(\Omega,g,\mu)$,
$\mu=\rho\,dx$, where $g= (g^{ij}(x))$ is the (co)metric associated with a
symmetric second-order differential operator $\mathbf{L}(f) =
\frac{1}{\rho}\sum_{ij} \partial_i (g^{ij} \rho\,\partial_j f)$ defined
on a domain $\Omega$ of $\mathbb{R}^d$ and such that there exists an orthonormal basis of $\mathcal{L}^2(\mu)$
consisting of polynomials which are eigenvectors of $\mathbf{L}$ and this
basis is compatible with the filtration of the space of polynomials by some weighted degree.
In a joint paper of D. Bakry, M. Zani, and the author
this problem was solved in dimension 2 for the usual degree. In the present paper we solve it still
in dimension 2 but for a weighted degree with arbitrary positive weights.
Mots-clés :
orthogonal polynomials
Keywords: diffusion operator.
Keywords: diffusion operator.
@article{FAA_2023_57_3_a2,
author = {S. Yu. Orevkov},
title = {Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {39--73},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/}
}
TY - JOUR AU - S. Yu. Orevkov TI - Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 39 EP - 73 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/ LA - ru ID - FAA_2023_57_3_a2 ER -
S. Yu. Orevkov. Two-dimensional diffusion orthogonal polynomials ordered by a weighted degree. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 39-73. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a2/