Linear and multiplicative maps under spectral conditions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiplicative version of the Gleason–Kahane–Żelazko theorem for $C^*$-algebras given by Brits et al. in [4] is extended to maps from $C^*$-algebras to commutative semisimple Banach algebras. In particular, it is proved that if a multiplicative map $\phi$ from a $C^*$-algebra $\mathcal{U}$ to a commutative semisimple Banach algebra $\mathcal{V}$ is continuous on the set of all noninvertible elements of $\mathcal{U}$ and $\sigma(\phi(a)) \subseteq \sigma(a)$ for any $a \in \mathcal{U}$, then $\phi$ is a linear map. The multiplicative variation of the Kowalski–Słodkowski theorem given by Touré et al. in [14] is also generalized. Specifically, if $\phi$ is a continuous map from a $C^*$-algebra $\mathcal{U}$ to a commutative semisimple Banach algebra $\mathcal{V}$ satisfying the conditions $\phi(1_\mathcal{U})=1_\mathcal{V}$ and $\sigma(\phi(x)\phi(y)) \subseteq \sigma(xy)$ for all $x,y \in \mathcal{U}$, then $\phi$ generates a linear multiplicative map $\gamma_\phi$ on $\mathcal{U}$ which coincides with $\phi$ on the principal component of the invertible group of $\mathcal{U}$. If $\mathcal{U}$ is a Banach algebra such that each element of $\mathcal{U}$ has totally disconnected spectrum, then the map $\phi$ itself is linear and multiplicative on $\mathcal{U}$. It is shown that a similar statement is valid for a map with semisimple domain under a stricter spectral condition. Examples which demonstrate that some hypothesis in the results cannot be discarded.
Keywords: Banach algebra, $C^*$-algebra, linear map, semisimple algebra, spectrum, radical, GKŻ theorem.
Mots-clés : multiplicative map
@article{FAA_2023_57_3_a0,
     author = {B. Amin and R. Golla},
     title = {Linear and multiplicative maps under spectral conditions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/}
}
TY  - JOUR
AU  - B. Amin
AU  - R. Golla
TI  - Linear and multiplicative maps under spectral conditions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 18
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/
LA  - ru
ID  - FAA_2023_57_3_a0
ER  - 
%0 Journal Article
%A B. Amin
%A R. Golla
%T Linear and multiplicative maps under spectral conditions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-18
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/
%G ru
%F FAA_2023_57_3_a0
B. Amin; R. Golla. Linear and multiplicative maps under spectral conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/

[1] B. Aupetit, A Primer on Spectral Theory, Universitext, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[2] R. Brits, F. Schulz, C. Touré, “A spectral characterization of isomorphisms on $C^\star$-algebras”, Arch. Math. (Basel), 113:4 (2019), 391–398 | DOI | MR | Zbl

[3] A. Bourhim, J. Mashreghi, A. Stepanyan, “Maps between Banach algebras preserving the spectrum”, Arch. Math. (Basel), 107:6 (2016), 609–621 | DOI | MR | Zbl

[4] R. Brits, M. Mabrouk, C. Touré, “A multiplicative Gleason–Kahane–.{Z}elazko theorem for $C^\star$-algebras”, J. Math. Anal. Appl., 500:1 (2021), 125089 | DOI | MR | Zbl

[5] A. M. Gleason, “A characterization of maximal ideals”, J. Analyse Math., 19 (1967), 171–172 | DOI | MR

[6] O. Hatori, T. Miura, H. Takadi, “Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative”, J. Math. Anal. Appl., 326:1 (2007), 281–296 | DOI | MR | Zbl

[7] J.-P. Kahane, W. .{Z}elazko, “A characterization of maximal ideals in commutative Banach algebras”, Studia Math., 29 (1968), 339–343 | DOI | MR | Zbl

[8] S. Kowalski, Z. Słodkowski, “A characterization of multiplicative linear functionals in Banach algebras”, Studia Math., 67:3 (1980), 215–223 | DOI | MR | Zbl

[9] K. Jarosz, When is a linear functional multiplicative?, Function spaces (Edwardsville, IL, 1998), Contemp. Math., no. 232, Amer. Math. Soc., Providence, RI, 1999, 201–210 | DOI | MR | Zbl

[10] A. Maouche, “Formes multiplicatives à valeurs dans le spectre”, Colloq. Math., 71:1 (1996), 43–45 | DOI | MR | Zbl

[11] M. Roitman, Y. Sternfeld, “When is a linear functional multiplicative?”, Trans. Amer. Math. Soc., 267:1 (1981), 111–124 | DOI | MR | Zbl

[12] C. Touré, R. Brits, G. Sebastian, “A multiplicative Kowalski–Słodkowski theorem for $C^*$-algebras”, Canad. Math. Bull., 2022, 1–8 | DOI

[13] C. Touré, F. Schulz, R. Brits, “Multiplicative maps into the spectrum”, Studia Math., 239:1 (2017), 55–66 | DOI | MR | Zbl

[14] C. Touré, F. Schulz, R. Brits, “Some character generating functions on Banach algebras”, J. Math. Anal. Appl., 468:2 (2018), 704–715 | DOI | MR | Zbl

[15] W. .{Z}elazko, “A characterization of multiplicative linear functionals in complex Banach algebras”, Studia Math., 30 (1968), 83–85 | DOI | MR

[16] Ke He Zhu, An Introduction to Operator Algebras, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993 | MR