Linear and multiplicative maps under spectral conditions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The multiplicative version of the Gleason–Kahane–Żelazko theorem for $C^*$-algebras given by
Brits et al. in [4] is extended to maps from
$C^*$-algebras to commutative semisimple Banach algebras.
In particular, it is proved that if a multiplicative
map $\phi$ from a $C^*$-algebra $\mathcal{U}$ to a commutative semisimple
Banach algebra $\mathcal{V}$ is continuous on the set of all noninvertible
elements of $\mathcal{U}$ and $\sigma(\phi(a)) \subseteq \sigma(a)$ for any $a \in
\mathcal{U}$, then $\phi$ is a linear map.
The multiplicative variation of the Kowalski–Słodkowski theorem
given by Touré et al. in
[14] is also generalized. Specifically, if $\phi$ is a continuous map
from a $C^*$-algebra $\mathcal{U}$ to a commutative
semisimple Banach algebra $\mathcal{V}$ satisfying the conditions $\phi(1_\mathcal{U})=1_\mathcal{V}$ and
$\sigma(\phi(x)\phi(y)) \subseteq \sigma(xy)$ for all $x,y \in \mathcal{U}$,
then $\phi$ generates a linear
multiplicative map $\gamma_\phi$ on $\mathcal{U}$ which coincides with $\phi$ on the principal component of the
invertible group of $\mathcal{U}$. If $\mathcal{U}$ is a Banach algebra such that each element of $\mathcal{U}$
has totally disconnected spectrum, then
the map $\phi$ itself is linear and multiplicative
on $\mathcal{U}$. It is shown that a similar statement is valid for a map with
semisimple domain under a stricter spectral condition. Examples
which demonstrate that some hypothesis
in the results cannot be discarded.
Keywords:
Banach algebra, $C^*$-algebra, linear map, semisimple algebra, spectrum, radical, GKŻ
theorem.
Mots-clés : multiplicative map
Mots-clés : multiplicative map
@article{FAA_2023_57_3_a0,
author = {B. Amin and R. Golla},
title = {Linear and multiplicative maps under spectral conditions},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {3--18},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/}
}
B. Amin; R. Golla. Linear and multiplicative maps under spectral conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/