Linear and multiplicative maps under spectral conditions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiplicative version of the Gleason–Kahane–Żelazko theorem for $C^*$-algebras given by Brits et al. in [4] is extended to maps from $C^*$-algebras to commutative semisimple Banach algebras. In particular, it is proved that if a multiplicative map $\phi$ from a $C^*$-algebra $\mathcal{U}$ to a commutative semisimple Banach algebra $\mathcal{V}$ is continuous on the set of all noninvertible elements of $\mathcal{U}$ and $\sigma(\phi(a)) \subseteq \sigma(a)$ for any $a \in \mathcal{U}$, then $\phi$ is a linear map. The multiplicative variation of the Kowalski–Słodkowski theorem given by Touré et al. in [14] is also generalized. Specifically, if $\phi$ is a continuous map from a $C^*$-algebra $\mathcal{U}$ to a commutative semisimple Banach algebra $\mathcal{V}$ satisfying the conditions $\phi(1_\mathcal{U})=1_\mathcal{V}$ and $\sigma(\phi(x)\phi(y)) \subseteq \sigma(xy)$ for all $x,y \in \mathcal{U}$, then $\phi$ generates a linear multiplicative map $\gamma_\phi$ on $\mathcal{U}$ which coincides with $\phi$ on the principal component of the invertible group of $\mathcal{U}$. If $\mathcal{U}$ is a Banach algebra such that each element of $\mathcal{U}$ has totally disconnected spectrum, then the map $\phi$ itself is linear and multiplicative on $\mathcal{U}$. It is shown that a similar statement is valid for a map with semisimple domain under a stricter spectral condition. Examples which demonstrate that some hypothesis in the results cannot be discarded.
Keywords: Banach algebra, $C^*$-algebra, linear map, semisimple algebra, spectrum, radical, GKŻ theorem.
Mots-clés : multiplicative map
@article{FAA_2023_57_3_a0,
     author = {B. Amin and R. Golla},
     title = {Linear and multiplicative maps under spectral conditions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/}
}
TY  - JOUR
AU  - B. Amin
AU  - R. Golla
TI  - Linear and multiplicative maps under spectral conditions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 18
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/
LA  - ru
ID  - FAA_2023_57_3_a0
ER  - 
%0 Journal Article
%A B. Amin
%A R. Golla
%T Linear and multiplicative maps under spectral conditions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-18
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/
%G ru
%F FAA_2023_57_3_a0
B. Amin; R. Golla. Linear and multiplicative maps under spectral conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a0/