On the Birman problem in the theory of nonnegative symmetric operators with compact inverse
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 111-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Large classes of nonnegative Schrödinger operators on $\Bbb R^2$ and $\Bbb R^3$ with the following properties are described: 1. The restriction of each of these operators to an appropriate unbounded set of measure zero in $\Bbb R^2$ (in $\Bbb R^3$) is a nonnegative symmetric operator (the operator of a Dirichlet problem) with compact preresolvent; 2. Under certain additional assumptions on the potential, the Friedrichs extension of such a restriction has continuous (sometimes absolutely continuous) spectrum filling the positive semiaxis. The obtained results give a solution of a problem by M. S. Birman.
Keywords: Schrödinger operator, symmetric nonnegative operator, compact preresolvent, Friedrichs extension, continuous spectrum.
@article{FAA_2023_57_2_a8,
     author = {M. M. Malamud},
     title = {On the {Birman} problem in the theory of nonnegative symmetric operators with compact inverse},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {111--116},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a8/}
}
TY  - JOUR
AU  - M. M. Malamud
TI  - On the Birman problem in the theory of nonnegative symmetric operators with compact inverse
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 111
EP  - 116
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a8/
LA  - ru
ID  - FAA_2023_57_2_a8
ER  - 
%0 Journal Article
%A M. M. Malamud
%T On the Birman problem in the theory of nonnegative symmetric operators with compact inverse
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 111-116
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a8/
%G ru
%F FAA_2023_57_2_a8
M. M. Malamud. On the Birman problem in the theory of nonnegative symmetric operators with compact inverse. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 111-116. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a8/

[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Texts and Monographs in Physics, Springer-Verlag, Berlin–New York, 1988 | MR | Zbl

[2] A. Alonso, B. Simon, J. Operator Theory, 4:2 (1980), 251–270 | MR | Zbl

[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 2, Vischa shkola, Kharkov, 1978 | MR

[4] M. Sh. Birman, Matem. sb., 38(80):4 (1956), 431–450 | Zbl

[5] M. Sh. Birman, Matem. sb., 55:2 (1961), 127–174

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg, 2010

[7] M. I. Vishik, Trudy MMO, 1 (1952), 186–246

[8] V. A. Derkach, M. M. Malamud, Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi, Institut matematiki NAN Ukrainy, Kiev, 2017

[9] M. Kaminaga, T. Mine, F. Nakano, Ann. Henri Poincaré, 21:2 (2020), 405–435 | DOI | MR | Zbl

[10] A. N. Kochubei, Funkts. analiz i ego pril., 16:2 (1982), 74–75 | MR | Zbl

[11] M. G. Krein, Matem. sb., 20:3 (1947), 431–495 | Zbl

[12] M. M. Malamud, H. Neidhardt, J. Differential Equations, 252:11 (2012), 5875–5922 | DOI | MR | Zbl

[13] M. M. Malamud, K. Schmüdgen, J. Funct. Anal., 263:10 (2012), 3144–3194 | DOI | MR | Zbl

[14] S. Hassi, M. M. Malamud, H. S. V. de Snoo, Math. Nachr., 274–275 (2004), 40–73 | DOI | MR | Zbl

[15] L. I. Hedberg, Acta Math., 147:3–4 (1981), 237–264 | DOI | MR | Zbl

[16] L. Hörmander, Acta Math., 94 (1955), 161–248 | DOI | MR | Zbl