Spectral analysis of a dynamical system describing the diffusion of neutrons
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 75-92

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral properties of the generator of an evolution semigroup describing the dynamics of particle transport in a substance are studied. An effective estimate of the number of unstable modes is obtained, and geometric conditions for spectral stability and instability are found.
Keywords: linearized Boltzmann equation, evolution semigroup generator, spectrum, Birman– Schwinger principle, instability index.
@article{FAA_2023_57_2_a4,
     author = {S. A. Stepin},
     title = {Spectral analysis of a dynamical system describing the diffusion of neutrons},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--92},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Spectral analysis of a dynamical system describing the diffusion of neutrons
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 75
EP  - 92
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/
LA  - ru
ID  - FAA_2023_57_2_a4
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Spectral analysis of a dynamical system describing the diffusion of neutrons
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 75-92
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/
%G ru
%F FAA_2023_57_2_a4
S. A. Stepin. Spectral analysis of a dynamical system describing the diffusion of neutrons. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 75-92. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/