Spectral analysis of a dynamical system describing the diffusion of neutrons
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 75-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral properties of the generator of an evolution semigroup describing the dynamics of particle transport in a substance are studied. An effective estimate of the number of unstable modes is obtained, and geometric conditions for spectral stability and instability are found.
Keywords: linearized Boltzmann equation, evolution semigroup generator, spectrum, Birman– Schwinger principle, instability index.
@article{FAA_2023_57_2_a4,
     author = {S. A. Stepin},
     title = {Spectral analysis of a dynamical system describing the diffusion of neutrons},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--92},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Spectral analysis of a dynamical system describing the diffusion of neutrons
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 75
EP  - 92
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/
LA  - ru
ID  - FAA_2023_57_2_a4
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Spectral analysis of a dynamical system describing the diffusion of neutrons
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 75-92
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/
%G ru
%F FAA_2023_57_2_a4
S. A. Stepin. Spectral analysis of a dynamical system describing the diffusion of neutrons. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 75-92. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a4/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[2] T. Karleman, Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960 | MR

[3] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978

[4] J. Lehner, G. M. Wing, “On the spectrum of an unsymmetric operator arising in the transport theory of neutrons”, Comm. Pure Appl. Math., 8 (1955), 217–234 | DOI | MR | Zbl

[5] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61 (1961), 3–158

[6] B. Devison, Teoriya perenosa neitronov, Atomizdat, M., 1960

[7] S. B. Shikhov, Voprosy matematicheskoi teorii reaktorov. Lineinyi analiz, Atomizdat, M., 1973

[8] S. Albertoni, B. Montagnini, “On the spectrum of neutron transport equation in finite bodies”, J. Math. Anal. Appl., 13 (1966), 19–48 | DOI | MR | Zbl

[9] S. Ukai, “Eigenvalues of the neutron transport operator for a homogeneous finite moderator”, J. Math. Anal. Appl., 18 (1967), 297–314 | DOI | MR | Zbl

[10] J. Schwartz, “Some non-selfadjoint operators”, Comm. Pure Appl. Math., 13 (1960), 609–639 | DOI | MR | Zbl

[11] T. Kato, “Wave operators and similarity for some non-selfadjoint operators”, Math. Ann., 162 (1966), 258–279 | DOI | MR | Zbl

[12] B. Simon, Functional integration and quantum physics, Academic Press, New York–London, 1979 | MR | Zbl

[13] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[14] S. A. Stepin, “Volnovye operatory dlya linearizovannogo uravneniya Boltsmana v odnoskorostnoi teorii perenosa”, Matem. sb., 192:1 (2001), 139–160 | DOI | MR | Zbl

[15] Yu. A. Kuperin, S. N. Nabokov, R. V. Romanov, “Spectral analysis of the transport operator: a functional model approach”, Indiana Univ. Math. J., 51:6 (2002), 1389–1425 | DOI | MR | Zbl

[16] S. A. Stepin, “Printsip Birmana–Shvingera i gipoteza Nelkina v teorii perenosa neitronov”, Dokl. RAN, 380:1 (2011), 19–22

[17] I. V. Prokhorov, “O razreshimosti nachalno-kraevoi zadachi dlya integrodifferentsialnogo uravneniya”, Sib. matem. zhurn., 53:2 (2012), 377–387 | MR | Zbl

[18] D. Suragan, “K voprosam spektralnoi geometrii dlya operatora odnoskorostnogo perenosa chastits”, Zh. vychisl. matem. i matem. fiz., 55:5 (2015), 846–849 | DOI | MR | Zbl