Some inequalities for $p$-quermassintegrals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 18-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize the notions of quermassintegrals, harmonic quermassintegrals, and affine quermassintegrals to $p$-quermassintegrals so that the cases $p=1, -1, -n$ of $p$-quermassintegrals are quermassintegrals, harmonic quermassintegrals, and affine quermassintegrals, respectively. Further, we obtain some inequalities associated with $p$-quermassintegrals, including $L_q$ Brunn–Minkowski-type inequalities, a monotonic inequality, and a Bourgain–Milman-type inequality.
Keywords: quermassintegral, harmonic quermassintegral, affine quermassintegral, $p$-quermassintegral, $L_q$ Brunn–Minkowski inequality, monotonic inequality, Bourgain–Milman inequality.
@article{FAA_2023_57_2_a1,
     author = {W. Wang and Ya. Zhou},
     title = {Some inequalities for $p$-quermassintegrals},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--30},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a1/}
}
TY  - JOUR
AU  - W. Wang
AU  - Ya. Zhou
TI  - Some inequalities for $p$-quermassintegrals
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 18
EP  - 30
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a1/
LA  - ru
ID  - FAA_2023_57_2_a1
ER  - 
%0 Journal Article
%A W. Wang
%A Ya. Zhou
%T Some inequalities for $p$-quermassintegrals
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 18-30
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a1/
%G ru
%F FAA_2023_57_2_a1
W. Wang; Ya. Zhou. Some inequalities for $p$-quermassintegrals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 18-30. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a1/

[1] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. II. Novye neravenstva mezhdu smeshannymi ob'emami i ikh prilozheniya”, Matem. sb., 2(44):6 (1937), 1205–1238 | Zbl

[2] J. Bourgain, V. D. Milman, “New volume ratio properties for convex symmetric bodies in $\mathbb{R}^n$”, Invent. Math., 88:2 (1987), 319–340 | DOI | MR | Zbl

[3] N. Dafnis, G. Paouris, “Estimates for the affine and dual affine quermassintegrals of convex bodies”, Illinois J. Math., 56:4 (2012), 1005–1021 | DOI | MR | Zbl

[4] W. J. Firey, “Mean cross-section measures of harmonic means of convex bodies”, Pacific J. Math., 11 (1961), 1263–1266 | DOI | MR | Zbl

[5] W. J. Firey, “$p$-means of convex bodies”, Math. Scand., 10:1 (1962), 17–24 | DOI | MR | Zbl

[6] R. J. Gardner, “The Brunn–Minkowski inequality”, Bull. Amer. Math. Soc., 39:3 (2002), 355–405 | DOI | MR | Zbl

[7] R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[8] R. J. Gardner, “The dual Brunn–Minkowski theory for bounded Borel sets: Dual affine quermassintegrals and inequalities”, Adv. Math., 216:1 (2007), 358–386 | DOI | MR | Zbl

[9] E. Grinberg, “Isoperimetric inequalities and identities for $k$-dimensional cross-sections of convex bodies”, Math. Ann., 291:1 (1991), 75–86 | DOI | MR

[10] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 | MR | Zbl

[11] G. Kuperberg, “From the Mahler conjecture to Gauss linking integrals”, Geom. Funct. Anal., 18:3 (2008), 870–892 | DOI | MR | Zbl

[12] E. Lutwak, “Dual cross-sectional measures”, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 58:1 (1975), 1–5 | MR | Zbl

[13] E. Lutwak, “Mean dual and harmonic cross-sectional measures”, Ann. Mat. Pura Appl., 119 (1979), 139–148 | DOI | MR | Zbl

[14] E. Lutwak, “A general isepiphanic inequality”, Proc. Amer. Math. Soc., 90:3 (1984), 415–421 | DOI | MR | Zbl

[15] E. Lutwak, “Inequalities for Hadwiger's harmonic quermassintegrals”, Math. Ann., 280:1 (1988), 165–175 | DOI | MR | Zbl

[16] E. Lutwak, “The Brunn–Minkowski–Firey theory I: mixed volumes and the minkowski problem”, J. Differential Geom., 38:1 (1993), 131–150 | DOI | MR | Zbl

[17] R. Schneider, Convex Bodies: The Brunn–Minkowski theory, Cambridge University Press, Cambridge, 2014 | MR | Zbl

[18] J. Yuan, G. S. Leng, “Inequalities for dual affine quermassintegrals”, J. Inequal. Appl., 2006 (2006) | MR

[19] J. Yuan, S. F. Yuan, G. S. Leng, “Inequalities for dual harmonic quermassintegrals”, J. Korean Math. Soc., 43:3 (2006), 593–607 | DOI | MR | Zbl