Some inequalities for $p$-quermassintegrals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 18-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we generalize the notions of quermassintegrals, harmonic quermassintegrals,
and affine quermassintegrals to $p$-quermassintegrals so that the cases $p=1, -1, -n$
of $p$-quermassintegrals are quermassintegrals, harmonic quermassintegrals,
and affine quermassintegrals, respectively. Further, we obtain
some inequalities associated
with $p$-quermassintegrals, including $L_q$ Brunn–Minkowski-type inequalities,
a monotonic inequality, and a Bourgain–Milman-type inequality.
Keywords:
quermassintegral, harmonic quermassintegral, affine quermassintegral, $p$-quermassintegral,
$L_q$ Brunn–Minkowski inequality, monotonic inequality, Bourgain–Milman inequality.
@article{FAA_2023_57_2_a1,
author = {W. Wang and Ya. Zhou},
title = {Some inequalities for $p$-quermassintegrals},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {18--30},
publisher = {mathdoc},
volume = {57},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a1/}
}
W. Wang; Ya. Zhou. Some inequalities for $p$-quermassintegrals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 18-30. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a1/