Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_1_a7, author = {V. G. Zvyagin and V. P. Orlov}, title = {The weak solvability of an inhomogeneous dynamic problem}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {93--99}, publisher = {mathdoc}, volume = {57}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/} }
V. G. Zvyagin; V. P. Orlov. The weak solvability of an inhomogeneous dynamic problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/
[1] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[2] I. I. Vorovich, V. I. Yudovich, Matem. sb., 53(95):4 (1961), 393–428
[3] Dzh. G. Oldroid, Reologiya: teoriya i prilozheniya, 1962, 757–793
[4] A. P. Oskolkov, Tr. MIAN SSSR, 179 (1988), 126–164
[5] Yu. N. Bibikov, Obschii kurs obyknovennykh differentsialnykh uravnenii, Izd-vo Leningradskogo un-ta, Leningrad, 1981 | MR
[6] V. G. Zvyagin, D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, de Gruyter Series in Nonlinear Analysis and Applications, 12, Walter de Gruyter Co, Berlin, 2008 | DOI | MR
[7] V. G. Zvyagin, V. P. Orlov, Nonlinear Analysis, 172 (2018), 73–98 | DOI | MR | Zbl
[8] V. G. Zvyagin, V. P. Orlov, Discrete Contin. Dyn. Syst., Ser. A, 38:12 (2018), 6327–6350 | DOI | MR
[9] V. Zvyagin, V. Orlov, Discrete Cont. Dyn. Syst., Ser. B, 23:9 (2018), 3855–3877 | MR | Zbl
[10] R. Temam, Uravnenie Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR
[11] R. J. DiPerna, P.-L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[12] G. Crippa, C. de Lellis, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl