The weak solvability of an inhomogeneous dynamic problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used.
Keywords: viscoelastic continuum, a priori estimate, weak solution, regular Lagrangian flow, trajectory.
@article{FAA_2023_57_1_a7,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {The weak solvability of an inhomogeneous dynamic problem},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - The weak solvability of an inhomogeneous dynamic problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 93
EP  - 99
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/
LA  - ru
ID  - FAA_2023_57_1_a7
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T The weak solvability of an inhomogeneous dynamic problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 93-99
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/
%G ru
%F FAA_2023_57_1_a7
V. G. Zvyagin; V. P. Orlov. The weak solvability of an inhomogeneous dynamic problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/