The weak solvability of an inhomogeneous dynamic problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used.
Keywords: viscoelastic continuum, a priori estimate, weak solution, regular Lagrangian flow, trajectory.
@article{FAA_2023_57_1_a7,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {The weak solvability of an inhomogeneous dynamic problem},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - The weak solvability of an inhomogeneous dynamic problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 93
EP  - 99
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/
LA  - ru
ID  - FAA_2023_57_1_a7
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T The weak solvability of an inhomogeneous dynamic problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 93-99
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/
%G ru
%F FAA_2023_57_1_a7
V. G. Zvyagin; V. P. Orlov. The weak solvability of an inhomogeneous dynamic problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/

[1] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[2] I. I. Vorovich, V. I. Yudovich, Matem. sb., 53(95):4 (1961), 393–428

[3] Dzh. G. Oldroid, Reologiya: teoriya i prilozheniya, 1962, 757–793

[4] A. P. Oskolkov, Tr. MIAN SSSR, 179 (1988), 126–164

[5] Yu. N. Bibikov, Obschii kurs obyknovennykh differentsialnykh uravnenii, Izd-vo Leningradskogo un-ta, Leningrad, 1981 | MR

[6] V. G. Zvyagin, D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, de Gruyter Series in Nonlinear Analysis and Applications, 12, Walter de Gruyter Co, Berlin, 2008 | DOI | MR

[7] V. G. Zvyagin, V. P. Orlov, Nonlinear Analysis, 172 (2018), 73–98 | DOI | MR | Zbl

[8] V. G. Zvyagin, V. P. Orlov, Discrete Contin. Dyn. Syst., Ser. A, 38:12 (2018), 6327–6350 | DOI | MR

[9] V. Zvyagin, V. Orlov, Discrete Cont. Dyn. Syst., Ser. B, 23:9 (2018), 3855–3877 | MR | Zbl

[10] R. Temam, Uravnenie Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[11] R. J. DiPerna, P.-L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[12] G. Crippa, C. de Lellis, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl