The weak solvability of an inhomogeneous dynamic problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of a weak solution to the initial boundary value problem for the
equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity
field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations
of the original problem followed by the passage to the limit based on a priori estimates.
To study the behavior of
trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used.
Keywords:
viscoelastic continuum, a priori estimate, weak
solution, regular Lagrangian flow, trajectory.
@article{FAA_2023_57_1_a7,
author = {V. G. Zvyagin and V. P. Orlov},
title = {The weak solvability of an inhomogeneous dynamic problem},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {93--99},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/}
}
V. G. Zvyagin; V. P. Orlov. The weak solvability of an inhomogeneous dynamic problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a7/