Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_1_a5, author = {A. Ranjbar-Motlagh}, title = {Nash-type inequalities on metric-measure spaces}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {83--89}, publisher = {mathdoc}, volume = {57}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a5/} }
A. Ranjbar-Motlagh. Nash-type inequalities on metric-measure spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 83-89. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a5/
[1] P. Alonso Ruiz, F. Baudoin, “Gagliardo–Nirenberg, Trudinger-Moser and Morrey inequalities on Dirichlet spaces”, J. Math. Anal. Appl., 497:2 (2021), 124899 | DOI | MR | Zbl
[2] N. Badr, “Gagliardo–Nirenberg inequalities on manifolds”, J. Math. Anal. Appl., 349:2 (2009), 493–502 | DOI | MR | Zbl
[3] D. Bakry, I. Gentil, M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, Cham, 2014 | DOI | MR | Zbl
[4] V. I. Bogachev, Differentsiruemye mery i ischislenie Mallyavena, Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2008
[5] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015 | MR
[6] A. Gogatishvili, P. Koskela, N. Shanmugalingam, “Interpolation properties of Besov spaces defined on metric spaces”, Math. Nachr., 283:2 (2010), 215–231 | DOI | MR | Zbl
[7] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001 | MR | Zbl
[8] N. J. Korevaar, R. M. Schoen, “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom., 1:4 (1993), 561–659 | DOI | MR | Zbl
[9] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl
[10] A. Ranjbar-Motlagh, Analysis on metric-measure spaces, Ph.D. thesis, New York University, New York, 1998 | MR
[11] A. Ranjbar-Motlagh, “An embedding theorem for Sobolev type functions with gradients in a Lorentz space”, Studia Math., 191:1 (2009), 1–9 | DOI | MR | Zbl
[12] A. Ranjbar-Motlagh, “Besov type function spaces defined on metric-measure spaces”, J. Math. Anal. Appl., 505:2 (2022), 125508 | DOI | MR | Zbl
[13] L. Saloff-Coste, Aspects of Sobolev-type Inequalities, LMS Lecture Note Series, 289, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl