Nash-type inequalities on metric-measure spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 83-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend homogeneous and inhomogeneous Nash-type inequalities to abstract metric-measure spaces.
Keywords: Nash inequality, Gagliardo–Nirenberg inequality, Sobolev inequality, metric-measure spaces.
@article{FAA_2023_57_1_a5,
     author = {A. Ranjbar-Motlagh},
     title = {Nash-type inequalities on metric-measure spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--89},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a5/}
}
TY  - JOUR
AU  - A. Ranjbar-Motlagh
TI  - Nash-type inequalities on metric-measure spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 83
EP  - 89
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a5/
LA  - ru
ID  - FAA_2023_57_1_a5
ER  - 
%0 Journal Article
%A A. Ranjbar-Motlagh
%T Nash-type inequalities on metric-measure spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 83-89
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a5/
%G ru
%F FAA_2023_57_1_a5
A. Ranjbar-Motlagh. Nash-type inequalities on metric-measure spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 83-89. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a5/

[1] P. Alonso Ruiz, F. Baudoin, “Gagliardo–Nirenberg, Trudinger-Moser and Morrey inequalities on Dirichlet spaces”, J. Math. Anal. Appl., 497:2 (2021), 124899 | DOI | MR | Zbl

[2] N. Badr, “Gagliardo–Nirenberg inequalities on manifolds”, J. Math. Anal. Appl., 349:2 (2009), 493–502 | DOI | MR | Zbl

[3] D. Bakry, I. Gentil, M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, Cham, 2014 | DOI | MR | Zbl

[4] V. I. Bogachev, Differentsiruemye mery i ischislenie Mallyavena, Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2008

[5] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015 | MR

[6] A. Gogatishvili, P. Koskela, N. Shanmugalingam, “Interpolation properties of Besov spaces defined on metric spaces”, Math. Nachr., 283:2 (2010), 215–231 | DOI | MR | Zbl

[7] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001 | MR | Zbl

[8] N. J. Korevaar, R. M. Schoen, “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom., 1:4 (1993), 561–659 | DOI | MR | Zbl

[9] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[10] A. Ranjbar-Motlagh, Analysis on metric-measure spaces, Ph.D. thesis, New York University, New York, 1998 | MR

[11] A. Ranjbar-Motlagh, “An embedding theorem for Sobolev type functions with gradients in a Lorentz space”, Studia Math., 191:1 (2009), 1–9 | DOI | MR | Zbl

[12] A. Ranjbar-Motlagh, “Besov type function spaces defined on metric-measure spaces”, J. Math. Anal. Appl., 505:2 (2022), 125508 | DOI | MR | Zbl

[13] L. Saloff-Coste, Aspects of Sobolev-type Inequalities, LMS Lecture Note Series, 289, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl