Singularities equivariantly simple with respect to irreducible representations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 77-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given.
Keywords: classification of singularities, simple singularity, equivariant function.
@article{FAA_2023_57_1_a4,
     author = {I. A. Proskurnin},
     title = {Singularities equivariantly simple with respect to irreducible representations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/}
}
TY  - JOUR
AU  - I. A. Proskurnin
TI  - Singularities equivariantly simple with respect to irreducible representations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 77
EP  - 82
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/
LA  - ru
ID  - FAA_2023_57_1_a4
ER  - 
%0 Journal Article
%A I. A. Proskurnin
%T Singularities equivariantly simple with respect to irreducible representations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 77-82
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/
%G ru
%F FAA_2023_57_1_a4
I. A. Proskurnin. Singularities equivariantly simple with respect to irreducible representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii bookvol 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982

[2] E. A. Astashov, “O klassifikatsii osobennostei, ekvivariantno prostykh otnositelno predstavlenii tsiklicheskikh grupp”, Vestn. Udmurtsk. un-ta. Ser. mat. mekh. kompyut. nauki, 26:2 (2016), 155–159 | MR | Zbl

[3] E. A. Astashov, “Klassifikatsiya rostkov funktsii, ekvivariantno prostykh otnositelno gruppy poryadka $3$”, Matem. zametki, 105:2 (2019), 163–178 | DOI | MR | Zbl

[4] S. Bochner, “Compact groups of differentiable transformations”, Ann. of Math., 46:3 (1945), 372–381 | DOI | MR | Zbl

[5] S. M. Gusein-Zade, A.-M. Ya. Raukh, “O prostykh $\mathbb{Z}_3$-invariantnykh rostkakh funktsii”, Funkts. analiz i ego pril, 55:1 (2021), 56–64 | DOI | MR | Zbl

[6] S. M. Gusein-Zade, A.-M. Ya. Raukh, “O prostykh $\mathbb{Z}_2$-invariantnykh i uglovykh rostkakh funktsii”, Matem. zametki, 107:6 (2020), 855–864 | DOI | Zbl

[7] W. Domitrz, M. Manoel, P. de M. Rios, “The Wigner caustic on shell and singularities of odd functions”, J. Geom. Phys, 71 (2013), 58–72 | DOI | MR | Zbl

[8] I. A. Proskurnin, “Normalnye formy ekvivariantnykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 2, 51–55 | MR