Singularities equivariantly simple with respect to irreducible representations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 77-82

Voir la notice de l'article provenant de la source Math-Net.Ru

There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given.
Keywords: classification of singularities, simple singularity, equivariant function.
@article{FAA_2023_57_1_a4,
     author = {I. A. Proskurnin},
     title = {Singularities equivariantly simple with respect to irreducible representations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/}
}
TY  - JOUR
AU  - I. A. Proskurnin
TI  - Singularities equivariantly simple with respect to irreducible representations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 77
EP  - 82
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/
LA  - ru
ID  - FAA_2023_57_1_a4
ER  - 
%0 Journal Article
%A I. A. Proskurnin
%T Singularities equivariantly simple with respect to irreducible representations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 77-82
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/
%G ru
%F FAA_2023_57_1_a4
I. A. Proskurnin. Singularities equivariantly simple with respect to irreducible representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a4/