Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_1_a2, author = {J. V. Buralieva}, title = {Asymptotic relations for the distributional {Stockwell} and wavelet transforms}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {38--51}, publisher = {mathdoc}, volume = {57}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/} }
TY - JOUR AU - J. V. Buralieva TI - Asymptotic relations for the distributional Stockwell and wavelet transforms JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 38 EP - 51 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/ LA - ru ID - FAA_2023_57_1_a2 ER -
J. V. Buralieva. Asymptotic relations for the distributional Stockwell and wavelet transforms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 38-51. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/
[1] R. G. Stockwell, L. Mansinha, R. P. Lowe, “Localization of the complex sectrum: the $S$ transform”, IEEE Trans. Signal Process., 44 (1996), 998–1001 | DOI
[2] J. Du, M. W. Wong, H. Zhu, “Continuous and discrete inversion formulas for the Stockwell transform”, Integral Transforms Spec. Func., 18:8 (2007), 537–543 | DOI | MR | Zbl
[3] L. Riba, Multi-Dimensional Stockwell Transforms and Applications, PhD Dessertation, Universitá degli Studii di Torino, Torino, 2014 | Zbl
[4] Q. Guo, S. Molahajloo, M. W. Wong, “Modified Stockwell transforms and time-frequency analysis”, New Developments in Pseudo-Differential Operators, Operator Theory: Advances and Applications, 189, Basel, Birkhäuser, 2009, 275–285 | MR
[5] K. H.-V. Saneva, S. Atanasova, J. V. Buralieva, “Tauberian theorems for the Stockwell transform of Lizorkin distributions”, Appl. Anal., 99:4 (2020), 596–610 | DOI | MR | Zbl
[6] V. Catană, “Abelian and Tauberian results for the one-dimensional modified Stockwell transforms”, Appl. Anal., 96:6 (2017), 1047–1057 | DOI | MR | Zbl
[7] R. Estrada, R. P. Kanwal, A Distributional Approach to Asymptotics. Theory and Applications, Birkhäuser, Boston, 2002 | MR | Zbl
[8] S. Pilipović, B. Stankovic, J. Vindas, Asymptotic behavior of generalized functions, World Scientific Publishing Co., Hackensack, NJ, 2012 | MR | Zbl
[9] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986
[10] J. Vindas, S. Pilipović, D. Rakić, “Tauberian theorems for the wavelet transform”, J. Fourier Anal. Appl., 17:1 (2011), 65–95 | DOI | MR | Zbl
[11] K. Saneva, R. Aceska, S. Kostadinova, “Some Abelian and Tauberian results for the short-time Fourier transform”, Novi Sad J. Math., 43:2 (2013), 81–89 | MR | Zbl
[12] Ya. V. Buralieva, K. Saneva, S. Atanasova, “Napravlennoe kratkovremennoe preobrazovanie Fure i kvaziasimptotika obobschennykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 6–15 | DOI | MR | Zbl
[13] S. Pilipović, J. Vindas, “Multidimensional Tauberian theorems for vector-valued distributions”, Publ. Inst. Math. (Beograd) (N.S.), 95 (2017), 1–28 | DOI | MR
[14] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York–London, 1967 | MR | Zbl
[15] L. Schwartz, “Thèorie des distributions à valeurs vectorielles. I”, Ann. Inst. Fourier Grenpble, 7 (1957), 1–141 | DOI | MR | Zbl
[16] M. Holschneider, Wavelets. An Analysis Tool, The Clarendon Press, Oxford University Press, New York, 1995 | MR
[17] K. Gröchenig, Foundations of Time-Frequency Analysis, App. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2001 | DOI | MR | Zbl