Asymptotic relations for the distributional Stockwell and wavelet transforms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 38-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Abelian- and Tauberian-type results characterizing the quasiasymptotic behavior of distributions in $\mathcal{S}_{0}'(\mathbb{R})$ in terms of their Stockwell transforms are obtained. An Abelian-type result relating the quasiasymptotic boundedness of Lizorkin distributions to the asymptotic behavior of their Stockwell transforms is given. Several asymptotic results for the distributional wavelet transform are also presented.
Keywords: Stockwell transform, wavelet transform, quasiasymptotic boundedness, quasiasymptotic behavior, Abelian and Tauberian results.
Mots-clés : distributions
@article{FAA_2023_57_1_a2,
     author = {J. V. Buralieva},
     title = {Asymptotic relations for the distributional {Stockwell} and wavelet transforms},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--51},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/}
}
TY  - JOUR
AU  - J. V. Buralieva
TI  - Asymptotic relations for the distributional Stockwell and wavelet transforms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 38
EP  - 51
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/
LA  - ru
ID  - FAA_2023_57_1_a2
ER  - 
%0 Journal Article
%A J. V. Buralieva
%T Asymptotic relations for the distributional Stockwell and wavelet transforms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 38-51
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/
%G ru
%F FAA_2023_57_1_a2
J. V. Buralieva. Asymptotic relations for the distributional Stockwell and wavelet transforms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 38-51. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a2/

[1] R. G. Stockwell, L. Mansinha, R. P. Lowe, “Localization of the complex sectrum: the $S$ transform”, IEEE Trans. Signal Process., 44 (1996), 998–1001 | DOI

[2] J. Du, M. W. Wong, H. Zhu, “Continuous and discrete inversion formulas for the Stockwell transform”, Integral Transforms Spec. Func., 18:8 (2007), 537–543 | DOI | MR | Zbl

[3] L. Riba, Multi-Dimensional Stockwell Transforms and Applications, PhD Dessertation, Universitá degli Studii di Torino, Torino, 2014 | Zbl

[4] Q. Guo, S. Molahajloo, M. W. Wong, “Modified Stockwell transforms and time-frequency analysis”, New Developments in Pseudo-Differential Operators, Operator Theory: Advances and Applications, 189, Basel, Birkhäuser, 2009, 275–285 | MR

[5] K. H.-V. Saneva, S. Atanasova, J. V. Buralieva, “Tauberian theorems for the Stockwell transform of Lizorkin distributions”, Appl. Anal., 99:4 (2020), 596–610 | DOI | MR | Zbl

[6] V. Catană, “Abelian and Tauberian results for the one-dimensional modified Stockwell transforms”, Appl. Anal., 96:6 (2017), 1047–1057 | DOI | MR | Zbl

[7] R. Estrada, R. P. Kanwal, A Distributional Approach to Asymptotics. Theory and Applications, Birkhäuser, Boston, 2002 | MR | Zbl

[8] S. Pilipović, B. Stankovic, J. Vindas, Asymptotic behavior of generalized functions, World Scientific Publishing Co., Hackensack, NJ, 2012 | MR | Zbl

[9] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986

[10] J. Vindas, S. Pilipović, D. Rakić, “Tauberian theorems for the wavelet transform”, J. Fourier Anal. Appl., 17:1 (2011), 65–95 | DOI | MR | Zbl

[11] K. Saneva, R. Aceska, S. Kostadinova, “Some Abelian and Tauberian results for the short-time Fourier transform”, Novi Sad J. Math., 43:2 (2013), 81–89 | MR | Zbl

[12] Ya. V. Buralieva, K. Saneva, S. Atanasova, “Napravlennoe kratkovremennoe preobrazovanie Fure i kvaziasimptotika obobschennykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 6–15 | DOI | MR | Zbl

[13] S. Pilipović, J. Vindas, “Multidimensional Tauberian theorems for vector-valued distributions”, Publ. Inst. Math. (Beograd) (N.S.), 95 (2017), 1–28 | DOI | MR

[14] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York–London, 1967 | MR | Zbl

[15] L. Schwartz, “Thèorie des distributions à valeurs vectorielles. I”, Ann. Inst. Fourier Grenpble, 7 (1957), 1–141 | DOI | MR | Zbl

[16] M. Holschneider, Wavelets. An Analysis Tool, The Clarendon Press, Oxford University Press, New York, 1995 | MR

[17] K. Gröchenig, Foundations of Time-Frequency Analysis, App. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2001 | DOI | MR | Zbl