Improved inequalities for numerical radius via cartesian decomposition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 24-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive various lower bounds for the numerical radius $w(A)$ of a bounded linear operator $A$ defined on a complex Hilbert space, which improve the existing inequality $w^2(A)\geq \frac{1}{4}\|A^*A+AA^*\|$. In particular, for $r\geq 1$, we show that $$ \tfrac{1}{4}\|A^*A+AA^*\|\leq\tfrac{1}{2}(\tfrac{1}{2}\|\operatorname{Re}(A)+\operatorname{Im}(A)\|^{2r}+\tfrac{1}{2}\|\operatorname{Re}(A)-\operatorname{Im}(A)\|^{2r})^{1/r} \leq w^{2}(A), $$ where $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$ are the real and imaginary parts of $A$, respectively. Furthermore, we obtain upper bounds for $w^2(A)$ refining the well-known upper estimate $w^2(A)\leq \frac{1}{2}(w(A^2)+\|A\|^2)$. Criteria for $w(A)=\frac12\|A\|$ and for $w(A)=\frac{1}{2}\sqrt{\|A^*A+AA^*\|}$ are also given.
Keywords: numerical radius, operator norm, Cartesian decomposition, bounded linear operator.
@article{FAA_2023_57_1_a1,
     author = {P. Bhunia and S. Jana and M. S. Moslehian and K. Paul},
     title = {Improved inequalities for numerical radius via cartesian decomposition},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/}
}
TY  - JOUR
AU  - P. Bhunia
AU  - S. Jana
AU  - M. S. Moslehian
AU  - K. Paul
TI  - Improved inequalities for numerical radius via cartesian decomposition
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 24
EP  - 37
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/
LA  - ru
ID  - FAA_2023_57_1_a1
ER  - 
%0 Journal Article
%A P. Bhunia
%A S. Jana
%A M. S. Moslehian
%A K. Paul
%T Improved inequalities for numerical radius via cartesian decomposition
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 24-37
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/
%G ru
%F FAA_2023_57_1_a1
P. Bhunia; S. Jana; M. S. Moslehian; K. Paul. Improved inequalities for numerical radius via cartesian decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 24-37. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/