Improved inequalities for numerical radius via cartesian decomposition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive various lower bounds for the numerical radius $w(A)$ of a bounded linear operator $A$ defined on a complex Hilbert space, which improve the existing inequality $w^2(A)\geq \frac{1}{4}\|A^*A+AA^*\|$. In particular, for $r\geq 1$, we show that $$ \tfrac{1}{4}\|A^*A+AA^*\|\leq\tfrac{1}{2}(\tfrac{1}{2}\|\operatorname{Re}(A)+\operatorname{Im}(A)\|^{2r}+\tfrac{1}{2}\|\operatorname{Re}(A)-\operatorname{Im}(A)\|^{2r})^{1/r} \leq w^{2}(A), $$ where $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$ are the real and imaginary parts of $A$, respectively. Furthermore, we obtain upper bounds for $w^2(A)$ refining the well-known upper estimate $w^2(A)\leq \frac{1}{2}(w(A^2)+\|A\|^2)$. Criteria for $w(A)=\frac12\|A\|$ and for $w(A)=\frac{1}{2}\sqrt{\|A^*A+AA^*\|}$ are also given.
Keywords: numerical radius, operator norm, Cartesian decomposition, bounded linear operator.
@article{FAA_2023_57_1_a1,
     author = {P. Bhunia and S. Jana and M. S. Moslehian and K. Paul},
     title = {Improved inequalities for numerical radius via cartesian decomposition},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/}
}
TY  - JOUR
AU  - P. Bhunia
AU  - S. Jana
AU  - M. S. Moslehian
AU  - K. Paul
TI  - Improved inequalities for numerical radius via cartesian decomposition
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 24
EP  - 37
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/
LA  - ru
ID  - FAA_2023_57_1_a1
ER  - 
%0 Journal Article
%A P. Bhunia
%A S. Jana
%A M. S. Moslehian
%A K. Paul
%T Improved inequalities for numerical radius via cartesian decomposition
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 24-37
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/
%G ru
%F FAA_2023_57_1_a1
P. Bhunia; S. Jana; M. S. Moslehian; K. Paul. Improved inequalities for numerical radius via cartesian decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 24-37. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/

[1] A. Abu-Omar, F. Kittaneh, “A generalization of the numerical radius”, Linear Algebra Appl., 569 (2019), 323–334 | DOI | MR | Zbl

[2] P. Bhunia, S. S. Dragomir, M. S. Moslehian, K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer, Cham, 2022 | DOI | MR

[3] P. Bhunia, S. Bag, K. Paul, “Bounds for zeros of a polynomial using numerical radius of Hilbert space operators”, Ann. Funct. Anal., 12 (2021), 21 | DOI | MR

[4] P. Bhunia, S. Jana, K. Paul, Refined inequalities for the numerical radius of Hilbert space operators, arXiv: 2106.13949

[5] P. Bhunia, K. Paul, “Refinements of norm and numerical radius inequalities”, Rocky Mountain J. Math., 51:6 (2021), 1953–1965 | DOI | MR

[6] P. Bhunia, K. Paul, “Development of inequalities and characterization of equality conditions for the numerical radius”, Linear Algebra Appl., 630 (2021), 306–315 | DOI | MR

[7] M. L. Buzano, “Generalizzazione della diseguaglianza di Cauchy–Schwarz (Italian)”, Rend Sem. Mat. Univ. e Politec. Torino, 31 (1974), 405–409 | MR | Zbl

[8] K. Davidson, S. C. Power, “Best approximation in $C^*$-algebras”, J. Reine Angew. Math., 368 (1986), 43–62 | MR | Zbl

[9] S. S. Dragomir, “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Math., 40:2 (2007), 411–417 | MR | Zbl

[10] K. Feki, T. Yamazaki, “Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators”, Math. Inequal. Appl., 24:2 (2021), 405–420 | MR

[11] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, KomKniga, M., 2006

[12] F. Kittaneh, “Numerical radius inequalities for Hilbert space operators”, Studia Math., 168:1 (2005), 73–80 | DOI | MR | Zbl

[13] A. Mal, K. Paul, J. Sen, “Birkhoff–James orthogonality and numerical radius inequalities of operator matrices”, Monatsh. Math., 197:4 (2022), 717–731 | DOI | MR

[14] M. S. Moslehian, Q. Xu, A. Zamani, “Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces”, Linear Algebra Appl., 591 (2020), 299–321 | DOI | MR | Zbl

[15] M. E. Omidvar, H. R. Moradi, Kh. Shebrawi, “Sharpening some classical numerical radius inequalities”, Oper. Matrices, 12:2 (2018), 407–416 | DOI | MR | Zbl

[16] S. Sahoo, N. C. Rout, M. Sababheh, “Some extended numerical radius inequalities”, Linear Multilinear Algebra, 69:5 (2021), 907–920 | DOI | MR | Zbl

[17] T. Yamazaki, “On upper and lower bounds for the numerical radius and an equality condition”, Studia Math., 178:1 (2007), 83–89 | DOI | MR | Zbl

[18] A. Zamani, P. Wójcik, “Numerical radius orthogonality in $C^*$-algebras”, Ann. Funct. Anal., 11:4 (2020), 1081–1092 | DOI | MR | Zbl