Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_1_a1, author = {P. Bhunia and S. Jana and M. S. Moslehian and K. Paul}, title = {Improved inequalities for numerical radius via cartesian decomposition}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {24--37}, publisher = {mathdoc}, volume = {57}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/} }
TY - JOUR AU - P. Bhunia AU - S. Jana AU - M. S. Moslehian AU - K. Paul TI - Improved inequalities for numerical radius via cartesian decomposition JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 24 EP - 37 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/ LA - ru ID - FAA_2023_57_1_a1 ER -
%0 Journal Article %A P. Bhunia %A S. Jana %A M. S. Moslehian %A K. Paul %T Improved inequalities for numerical radius via cartesian decomposition %J Funkcionalʹnyj analiz i ego priloženiâ %D 2023 %P 24-37 %V 57 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/ %G ru %F FAA_2023_57_1_a1
P. Bhunia; S. Jana; M. S. Moslehian; K. Paul. Improved inequalities for numerical radius via cartesian decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 24-37. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a1/
[1] A. Abu-Omar, F. Kittaneh, “A generalization of the numerical radius”, Linear Algebra Appl., 569 (2019), 323–334 | DOI | MR | Zbl
[2] P. Bhunia, S. S. Dragomir, M. S. Moslehian, K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer, Cham, 2022 | DOI | MR
[3] P. Bhunia, S. Bag, K. Paul, “Bounds for zeros of a polynomial using numerical radius of Hilbert space operators”, Ann. Funct. Anal., 12 (2021), 21 | DOI | MR
[4] P. Bhunia, S. Jana, K. Paul, Refined inequalities for the numerical radius of Hilbert space operators, arXiv: 2106.13949
[5] P. Bhunia, K. Paul, “Refinements of norm and numerical radius inequalities”, Rocky Mountain J. Math., 51:6 (2021), 1953–1965 | DOI | MR
[6] P. Bhunia, K. Paul, “Development of inequalities and characterization of equality conditions for the numerical radius”, Linear Algebra Appl., 630 (2021), 306–315 | DOI | MR
[7] M. L. Buzano, “Generalizzazione della diseguaglianza di Cauchy–Schwarz (Italian)”, Rend Sem. Mat. Univ. e Politec. Torino, 31 (1974), 405–409 | MR | Zbl
[8] K. Davidson, S. C. Power, “Best approximation in $C^*$-algebras”, J. Reine Angew. Math., 368 (1986), 43–62 | MR | Zbl
[9] S. S. Dragomir, “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Math., 40:2 (2007), 411–417 | MR | Zbl
[10] K. Feki, T. Yamazaki, “Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators”, Math. Inequal. Appl., 24:2 (2021), 405–420 | MR
[11] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, KomKniga, M., 2006
[12] F. Kittaneh, “Numerical radius inequalities for Hilbert space operators”, Studia Math., 168:1 (2005), 73–80 | DOI | MR | Zbl
[13] A. Mal, K. Paul, J. Sen, “Birkhoff–James orthogonality and numerical radius inequalities of operator matrices”, Monatsh. Math., 197:4 (2022), 717–731 | DOI | MR
[14] M. S. Moslehian, Q. Xu, A. Zamani, “Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces”, Linear Algebra Appl., 591 (2020), 299–321 | DOI | MR | Zbl
[15] M. E. Omidvar, H. R. Moradi, Kh. Shebrawi, “Sharpening some classical numerical radius inequalities”, Oper. Matrices, 12:2 (2018), 407–416 | DOI | MR | Zbl
[16] S. Sahoo, N. C. Rout, M. Sababheh, “Some extended numerical radius inequalities”, Linear Multilinear Algebra, 69:5 (2021), 907–920 | DOI | MR | Zbl
[17] T. Yamazaki, “On upper and lower bounds for the numerical radius and an equality condition”, Studia Math., 178:1 (2007), 83–89 | DOI | MR | Zbl
[18] A. Zamani, P. Wójcik, “Numerical radius orthogonality in $C^*$-algebras”, Ann. Funct. Anal., 11:4 (2020), 1081–1092 | DOI | MR | Zbl