On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 3-23

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor number is the least upper bound for the Tjurina number, i.e., $\tau \leqslant \mu$. In this paper we show that, for zero-dimensional complete intersections, the reverse inequality holds. The proof is based on properties of faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of zero-dimensional singularities.
Keywords: Artinian algebras, faithful modules, annihilator, Kähler differentials, derivations, almost complete intersections, duality
Mots-clés : socle, cotangent complex.
@article{FAA_2023_57_1_a0,
     author = {A. G. Aleksandrov},
     title = {On a sharp lower bound for the {Tjurina} number of zero-dimensional complete intersections},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 23
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/
LA  - ru
ID  - FAA_2023_57_1_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-23
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/
%G ru
%F FAA_2023_57_1_a0
A. G. Aleksandrov. On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/