On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 3-23
Voir la notice de l'article provenant de la source Math-Net.Ru
As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor
number is the least upper bound for the Tjurina number, i.e.,
$\tau \leqslant \mu$. In this paper we show that, for
zero-dimensional complete intersections, the reverse inequality holds.
The proof is based on properties of
faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle
of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of
zero-dimensional singularities.
Keywords:
Artinian algebras, faithful modules, annihilator, Kähler differentials, derivations, almost complete
intersections, duality
Mots-clés : socle, cotangent complex.
Mots-clés : socle, cotangent complex.
@article{FAA_2023_57_1_a0,
author = {A. G. Aleksandrov},
title = {On a sharp lower bound for the {Tjurina} number of zero-dimensional complete intersections},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {3--23},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/}
}
TY - JOUR AU - A. G. Aleksandrov TI - On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 3 EP - 23 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/ LA - ru ID - FAA_2023_57_1_a0 ER -
A. G. Aleksandrov. On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/