On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor number is the least upper bound for the Tjurina number, i.e., $\tau \leqslant \mu$. In this paper we show that, for zero-dimensional complete intersections, the reverse inequality holds. The proof is based on properties of faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of zero-dimensional singularities.
Keywords: Artinian algebras, faithful modules, annihilator, Kähler differentials, derivations, almost complete intersections, duality
Mots-clés : socle, cotangent complex.
@article{FAA_2023_57_1_a0,
     author = {A. G. Aleksandrov},
     title = {On a sharp lower bound for the {Tjurina} number of zero-dimensional complete intersections},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 23
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/
LA  - ru
ID  - FAA_2023_57_1_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-23
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/
%G ru
%F FAA_2023_57_1_a0
A. G. Aleksandrov. On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a0/

[1] A. G. Aleksandrov, “Deformatsii buketov kvaziodnorodnykh odnomernykh osobennostei”, Funkts. analiz i ego pril., 15:1 (1981), 67–68 | MR

[2] A. G. Aleksandrov, “Duality and deformations of Artinian algebras”, Collection of theses of talks on the theory of rings, algebras and modules (Barnaul, 20-25 August 1991), SO AN SSSR, Novosibirsk, 1991, 134

[3] A. G. Aleksandrov, “Duality, derivations and deformations of zero-dimensional singularities”, Zero-dimensional schemes, (reprint 2016, de Gruyter, Berlin, 1994, 11–31 | MR | Zbl

[4] A. G. Aleksandrov, “Differentsialnye formy na nulmernykh osobennostyakh”, Funkts. analiz i ego pril., 52:4 (2018), 3–22 | DOI | MR | Zbl

[5] A. G. Aleksandrov, “O chislakh Milnora i Tyurinoi nulmernykh osobennostei”, Funkts. analiz i ego pril., 56:1 (2022), 3–23 | DOI

[6] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972

[7] D. A. Buchsbaum, D. Eisenbud, “What annihilates a module?”, J. Algebra, 47:2 (1977), 231–243 | DOI | MR | Zbl

[8] N. Burbaki, Algebra, v. 1, Algebraicheskie struktury. Lineinaya i polilineinaya algebra, Fizmatlit, M., 1962

[9] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971

[10] K. Feis, Algebra: koltsa, moduli i kategorii, v. 1, Mir, M., 1979 | MR

[11] U. Fulton, Teoriya peresechenii, Mir, M., 1989

[12] P. Gabriel, “Objets injectifs dans les catégories abéliennes”, Algèbre et théorie des nombres, 1958–1959, exp. 17, Seminaire Dubreil, 12, no. 2, Secrétariat mathématique, Paris, 1–32 | MR

[13] M. Giusti, “Classification des singularités isolées simples d'intersections complètes”, Singularities, Part 1 (Summer Inst. Arcata-1981), Proc. Symp. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, 457–494 | DOI | MR

[14] G.-M. Greuel, “Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten”, Math. Ann., 214:3 (1975), 235–266 | DOI | MR | Zbl

[15] G.-M. Greuel, B. Martin, G. Pfister, “Numerische Charakterisierung quasihomogener Gorenstein-Kurvensingularitäten”, Math. Nachr., 124:1 (1985), 123–131 | DOI | MR | Zbl

[16] T. H. Gulliksen, “On the length of faithful modules over artinian local rings”, Math. Scand., 31:3 (1972), 78–82 | DOI | MR | Zbl

[17] J. Herzog, E. Kunz (eds.), Der kanonische Module eines Cohen–Macaulay Rings (Seminar über die lokale Kohomologietheorie von Grotendieck, Universität Regensburg, Wintersemester 1970/1971), Lecture Notes in Math., 238, Springer-Verlag, Berlin, 1971 | DOI | MR

[18] Y. Hinohara, K. Kawasaki, K. Takahashi, “An application of Vasconcelos' lemma”, Bull. Nara Univ. Ed. Natur. Sci., 49:2 (2000), 1–3 | MR | Zbl

[19] A. Iarrobino, “Deforming complete intersection Artin algebras. Appendix: Hilbert function of $\mathbb C[x,y]/I$”, Singularities, Part 1 (Summer Inst. Arcata-1981), Proc. Symp. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, 593–608 | DOI | MR

[20] A. G. Kushnirenko, “Mnogogrannik Nyutona i chislo reshenii sistemy $k$ uravnenii s $k$ neizvestnymi”, UMN, 30:2 (1975), 266–267

[21] A. G. Kushnirenko, “Mnogogrannik Nyutona i chisla Milnora”, Funkts. analiz i ego pril., 9:1 (1975), 74–75 | MR | Zbl

[22] A. G. Kushnirenko, “Tselye tochki v mnogougolnikakh i mnogogrannikakh”, Kvant, 1977, no. 4, 13–20

[23] E. Kunz, Kähler Differentials, Advanced Lectures in Mathematics, Springer Fachmedien Wiesbaden GmbH, Wiesbaden, 1986 | DOI

[24] Le Dung Trang, “Vychislenie chisla Milnora izolirovannoi osobennosti polnogo peresecheniya”, Funkts. analiz i ego pril., 8:2 (1974), 45–49 | MR | Zbl

[25] I. Naruki, “Some remarks on isolated singularities and their application to algebraic manifolds”, Publ. Res. Inst. Math. Sci., 13:1 (1977), 17–46 | DOI | MR | Zbl

[26] V. P. Palamodov, “O kratnosti golomorfnogo otobrazheniya”, Funkts. analiz i ego pril., 1:3 (1967), 54–65 | MR | Zbl

[27] H. C. Pinkham, Deformations of algebraic varieties with $\mathbb G_m$action, Astérisque, 20, Société Mathématique de France, Paris, 1974 | MR

[28] O. Riemenschneider, “Deformationen von Quotientensingularitäten (nach zyklischen Gruppen)”, Math. Ann., 209:2 (1974), 211–248 | DOI | MR | Zbl

[29] K. Saito, “Quasihomogene isolierte Singularitäten von Hyperflächen”, Invent. Math., 14:1 (1971), 123–142 | DOI | MR | Zbl

[30] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, ser. IA, 27:2 (1980), 265–291 | MR | Zbl

[31] G. Scheja, H. Wiebe, “Über Derivationen von lokalen analytischen Algebren”, Convegno di Algebra Commutativa (INDAM, Rome, 1971), Symposia Math., XI, Academic Press, London, 1973, 161–192 | MR

[32] G. Scheja, U. Storch, “Über Spurfunktionen bei vollständigen Durchschnitten”, J. Reine Angew. Math., 278–279 (1975), 174–190 | MR | Zbl

[33] M. Schlessinger, “On rigid singularities”, Rice Univ. Stud., 59:1 (1973), 147–162 | MR | Zbl

[34] W. Teter, “Rings which are a factor of a Gorenstein ring by its socle”, Invent. Math., 23:1 (1974), 153–162 | DOI | MR | Zbl

[35] W. V. Vasconcelos, “On finitely generated flat modules”, Trans. Amer. Math. Soc., 138:2 (1969), 505–512 | DOI | MR | Zbl

[36] H. Vosegaard, “A characterization of quasi-homogeneous complete intersection singularities”, J. Alg. Geom., 11:3 (2002), 581–597 | DOI | MR | Zbl

[37] J. Wahl, “A characterization of quasi-homogeneous Gorenstein surface singularities”, Compositio Math., 55:3 (1985), 269–288 | MR | Zbl

[38] H. Wiebe, “Über homologische Invarianten lokaler Ringe”, Math. Ann., 179:4 (1969), 257–274 | DOI | MR | Zbl