Restricted partions: the polynomial case
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 80-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a restricted inverse prime number theorem for an arithmetical semigroup with polynomial growth of the abstract prime counting function. The adjective “restricted” refers to the fact that we consider the counting function of abstract integers of degree $\le t$ whose prime factorization may only contain the first $k$ abstract primes (arranged in nondescending order of their degree). The theorem provides the asymptotics of this counting function as $t,k\to\infty$. The study of the discussed asymptotics is motivated by two possible applications in mathematical physics: the calculation of the entropy of generalizations of the Bose gas and the study of the statistics of propagation of narrow wave packets on metric graphs.
Keywords: counting function, abstract prime number theorem, uniform asymptotics, metric graph.
@article{FAA_2022_56_4_a6,
     author = {D. S. Minenkov and V. E. Nazaikinskii and T. W. Hilberdink and V. L. Chernyshev},
     title = {Restricted partions: the polynomial case},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--92},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a6/}
}
TY  - JOUR
AU  - D. S. Minenkov
AU  - V. E. Nazaikinskii
AU  - T. W. Hilberdink
AU  - V. L. Chernyshev
TI  - Restricted partions: the polynomial case
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 80
EP  - 92
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a6/
LA  - ru
ID  - FAA_2022_56_4_a6
ER  - 
%0 Journal Article
%A D. S. Minenkov
%A V. E. Nazaikinskii
%A T. W. Hilberdink
%A V. L. Chernyshev
%T Restricted partions: the polynomial case
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 80-92
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a6/
%G ru
%F FAA_2022_56_4_a6
D. S. Minenkov; V. E. Nazaikinskii; T. W. Hilberdink; V. L. Chernyshev. Restricted partions: the polynomial case. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 80-92. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a6/

[1] J. Knopfmacher, Abstract analytic number theory, North-Holland, Amsterdam, 1975 | MR | Zbl

[2] G. H. Hardy, S. Ramanujan, “Asymptotic formulae in combinatory analysis”, Proc. London Math. Soc. (2), 17 (1918), 75–115 | DOI | MR | Zbl

[3] H. Rademacher, “On the partition function $p(n)$”, Proc. London Math. Soc. (2), 43:1 (1938), 241–254 | DOI | MR

[4] P. Erdős, J. Lehner, “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345 | MR

[5] G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR

[6] R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., 13:4 (1938), 242–247 | DOI | MR

[7] V. E. Nazaikinskii, “Ob entropii gaza Boze–Maslova”, Dokl. RAN, 448:3 (2013), 266–268 | DOI | Zbl

[8] V. L. Chernyshev, T. W. Hilberdink, V. E. Nazaikinskii, “Asymptotics of the number of restricted partitions”, Russ. J. Math. Phys., 27:4 (2020), 456–468 | DOI | MR | Zbl

[9] A. E. Ingham, “A Tauberian theorem for partitions”, Ann. Math., 2nd Ser., 42:5 (1941), 1075–1090 | DOI | MR | Zbl

[10] F. C. Auluck, C. B. Haselgrove, “On Ingham's Tauberian theorem for partitions”, Proc. Cambridge Phil. Soc., 48:4 (1952), 566–570 | DOI | MR | Zbl

[11] V. E. Nazaikinskii, “On the asymptotics of the number of states for the Bose–Maslov gas”, Math. Notes, 91:6 (2012), 816–823 | DOI | MR | Zbl

[12] D. S. Minenkov, V. E. Nazaikinskii, V. L. Chernyshev, “Ob asimptotike schitayuschei funktsii elementov v additivnoi arifmeticheskoi polugruppe s eksponentsialnoi schitayuschei funktsiei prostykh obrazuyuschikh”, Funkts. analiz i ego pril., 50:4 (2016), 55–75 | DOI | MR | Zbl

[13] V. L. Chernyshev, A. I. Shafarevich, “Statistics of Gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 372:2007 (2014), 20130145 | MR | Zbl

[14] V. L. Chernyshev, A. A. Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph”, TCDM 2018. Proceedings of the 2nd IMA Conference on Theoretical and Computational Discrete Mathematics, Part 1 (University of Derby, Derby, UK, September 14–15, 2018), Electronic Notes in Discrete Mathematics, 70, Elsevier, Amsterdam, 2018, 31–35 | DOI | MR | Zbl

[15] V. L. Chernyshev, A. A. Tolchennikov, “The second term in the asymptotics for the number of points moving along a metric graph”, Regul. Chaotic Dyn., 22:8 (2017), 937–948 | DOI | MR | Zbl

[16] V. L. Chernyshev, A. A. Tolchennikov, “Correction to the leading term of asymptotics in the problem of counting the number of points moving on a metric tree”, Russ. J. Math. Phys., 24:3 (2017), 290–298 | DOI | MR | Zbl

[17] V. L. Chernyshev, A. A. Tolchennikov, “Asymptotic estimate for the counting problems corresponding to the dynamical system on some decorated graphs”, Ergodic Theory Dyn. Systems, 38:5 (2018), 1697–1708 | DOI | MR

[18] V. L. Chernyshev, D. S. Minenkov, A. A. Tolchennikov, “O kolichestve vozmozhnykh konechnykh polozhenii sluchainogo bluzhdaniya na metricheskom grafe – polubeskonechnoi tsepi”, TMF, 207:1 (2021), 104–111 | DOI | MR | Zbl

[19] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977